题名 | Convolutional Echo-State Network with Random Memristors for Spatiotemporal Signal Classification |
作者 | Wang, Shaocong1,2; Chen, Hegan1,2; Zhang, Woyu3; Li, Yi3; Wang, Dingchen1,2; Shi, Shuhui1,2; Zhao, Yaping1,2; Loong, Kam Chi1,2; Chen, Xi1,2; Dong, Yujiao1,4; Zhang, Yi1,2; Jiang, Yang1,2; Furqan, Chaudhry2; Chen, Jia2; Wang, Qing5 ![]() ![]() ![]() ![]() |
通讯作者 | Shang, Dashan; Wang, Zhongrui |
发表日期 | 2022-05-01
|
DOI | |
发表期刊 | |
EISSN | 2640-4567
|
摘要 | The unprecedented development of Internet of Things results in the explosion of spatiotemporal signals generated by smart edge devices, leading to a surge of interest in real-time learning of such data. This imposes a big challenge to conventional digital hardware because of physically separated memory and processing units and the transistor scaling limit. Memristors are deemed a solution for efficient and portable deep learning. However, their ionic resistive switching incurs large programming stochasticity and energy, compromising their advantages in real-time learning spatiotemporal signals. To address the aforementioned issues, we propose a novel hardware-software codesign. Hardware-wise, the stochasticity in memristor programming is leveraged to produce random matrices for efficient in-memory computing. Software-wise, random convolutional-pooling architectures are integrated with echo-state networks that compute with the hardware random matrices and make real-time learning affordable. The synergy of the hardware and software not only improves the performance over conventional echo-state networks, that is, 90.94% and 91.67% (compared to baselines 88.33% and 62.50%), but also retains 187.79x and 93.66x improvement of energy efficiency compared to the digital alternatives on the representative Human Activity Recognition Using Smartphones (HAR) and CRICKET datasets, respectively. These advantages make random convolutional echo-state network (RCESN) a promising solution for the future smart edge hardware. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Key Research and Development Program of China[2018YFA0701500]
; Hong Kong Research Grant Council-Early Career Scheme[27206321]
; National Natural Science Foundation of China-Excellent Young Scientists Fund (Hong Kong and Macau)[62122004]
; National Key R&D Program of China[2018YFA0701500]
; National Natural Science Foundation of China[61874138,61888102,61771176,62171173]
; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB44000000]
; Research on the GaN Chip for 5G Applications[JCYJ20210324120409025]
; Research on high-reliable GaN power device and the related industrial power system[HZQB-KCZYZ-2021052]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Robotics
|
WOS记录号 | WOS:000798536400001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335426 |
专题 | 工学院_深港微电子学院 |
作者单位 | 1.Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam Rd, Hong Kong, Peoples R China 2.InnoHK Ctr, ACCESS AI Chip Ctr Emerging Smart Syst, Hong Kong Sci Pk, Hong Kong, Peoples R China 3.Chinese Acad Sci, Key Lab Microelect Devices & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China 4.Hangzhou Dianzi Univ, Inst Modern Circuit & Intelligent Informat, Hangzhou 310018, Zhejiang, Peoples R China 5.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Wang, Shaocong,Chen, Hegan,Zhang, Woyu,et al. Convolutional Echo-State Network with Random Memristors for Spatiotemporal Signal Classification[J]. ADVANCED INTELLIGENT SYSTEMS,2022.
|
APA |
Wang, Shaocong.,Chen, Hegan.,Zhang, Woyu.,Li, Yi.,Wang, Dingchen.,...&Wang, Zhongrui.(2022).Convolutional Echo-State Network with Random Memristors for Spatiotemporal Signal Classification.ADVANCED INTELLIGENT SYSTEMS.
|
MLA |
Wang, Shaocong,et al."Convolutional Echo-State Network with Random Memristors for Spatiotemporal Signal Classification".ADVANCED INTELLIGENT SYSTEMS (2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Advanced Intelligent(3537KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论