中文版 | English
题名

Positivity-preserving well-balanced central discontinuous Galerkin schemes for the Euler equations under gravitational fields

作者
通讯作者Wu,Kailiang
发表日期
2022-08-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号463
摘要
This paper designs and analyzes positivity-preserving well-balanced (WB) central discontinuous Galerkin (CDG) schemes for the Euler equations with gravity. A distinctive feature of these schemes is that they not only are WB for a general known stationary hydrostatic solution, but also can preserve the positivity of the fluid density and pressure. The standard CDG method does not possess this feature, while directly applying some existing WB techniques to the CDG framework may not accommodate the positivity and keep other important properties at the same time. In order to obtain the WB and positivity-preserving properties simultaneously while also maintaining the conservativeness and stability of the schemes, a novel spatial discretization is devised in the CDG framework based on suitable modifications to the numerical dissipation term and the source term approximation. The modifications are based on a crucial projection operator for the stationary hydrostatic solution, which is proposed for the first time in this work. This novel projection has the same order of accuracy as the standard L-2-projection, can be explicitly calculated, and is easy to implement without solving any optimization problems. More importantly, it ensures that the projected stationary solution has the same cell averages on both the primal and dual meshes, which is a key to achieve the desired properties of our schemes. Based on some convex decomposition techniques, rigorous positivity-preserving analyses for the resulting WB CDG schemes are carried out. Several one-and two-dimensional numerical examples are performed to illustrate the desired properties of these schemes, including the high-order accuracy, the WB property, the robustness for simulations involving the low pressure or density, high resolution for the discontinuous solutions and the small perturbations around the equilibrium state. (C) 2022 Elsevier Inc. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key R&D Program of China[2020YFA0712000] ; National Natural Science Foundation of China[12171227]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000828339600002
出版者
EI入藏号
20222112157469
EI主题词
Euler equations ; Gravitational effects ; Gravity waves ; Hydraulics
EI分类号
Fluid Flow, General:631.1 ; Hydraulics:632.1 ; Mathematics:921 ; Numerical Methods:921.6 ; Gravitation, Relativity and String Theory:931.5
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85130585343
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335438
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.School of Mathematical Sciences,Peking University,Beijing,100871,China
2.Nanchang Hangkong University,Nanchang,Jiangxi Province,330000,China
3.HEDPS,Center for Applied Physics and Technology,LMAM,School of Mathematical Sciences,Peking University,Beijing,100871,China
4.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,National Center for Applied Mathematics Shenzhen (NCAMS),Shenzhen,518055,China
通讯作者单位数学系;  深圳国家应用数学中心;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Jiang,Haili,Tang,Huazhong,Wu,Kailiang. Positivity-preserving well-balanced central discontinuous Galerkin schemes for the Euler equations under gravitational fields[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,463.
APA
Jiang,Haili,Tang,Huazhong,&Wu,Kailiang.(2022).Positivity-preserving well-balanced central discontinuous Galerkin schemes for the Euler equations under gravitational fields.JOURNAL OF COMPUTATIONAL PHYSICS,463.
MLA
Jiang,Haili,et al."Positivity-preserving well-balanced central discontinuous Galerkin schemes for the Euler equations under gravitational fields".JOURNAL OF COMPUTATIONAL PHYSICS 463(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Haili]的文章
[Tang,Huazhong]的文章
[Wu,Kailiang]的文章
百度学术
百度学术中相似的文章
[Jiang,Haili]的文章
[Tang,Huazhong]的文章
[Wu,Kailiang]的文章
必应学术
必应学术中相似的文章
[Jiang,Haili]的文章
[Tang,Huazhong]的文章
[Wu,Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。