题名 | Deep learning enabled particle analysis for quality assurance of construction materials |
作者 | |
通讯作者 | Wei,Yongqi; Wei,Zhenhua |
发表日期 | 2022-08-01
|
DOI | |
发表期刊 | |
ISSN | 0926-5805
|
EISSN | 1872-7891
|
卷号 | 140 |
摘要 | Microspheres in fly ash are critically important for determining the properties and performance of fly ash dosed concrete, but facile and cost-effective analysis and quality control of fly ash microspheres remain difficult on construction sites. This paper describes a deep learning method to segment and analyze fly ash spherical particles using a simple optical microscope and a path aggregation network. The proposed method accurately detects microspheres and predicts their particle size distribution and volume fraction, outperforming traditional methods for particle analysis. The predicted results are directly linked to key properties that determine the quality of fly ash. This research establishes an automated and efficient method for rapid job-site fly ash spherical particle analysis, so that inexpensive and handy construction material quality control and assurance can be achieved for infrastructure construction. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key Research and Development Program of China[2019YFC1906203];National Natural Science Foundation of China[51468002];
|
WOS研究方向 | Construction & Building Technology
; Engineering
|
WOS类目 | Construction & Building Technology
; Engineering, Civil
|
WOS记录号 | WOS:000808452200003
|
出版者 | |
EI入藏号 | 20222212168534
|
EI主题词 | Cost effectiveness
; Deep learning
; Fly ash
; Light transmission
; Microspheres
; Particle size
; Particle size analysis
; Quality assurance
; Quality control
; Size distribution
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Light/Optics:741.1
; Industrial Economics:911.2
; Quality Assurance and Control:913.3
; Mathematical Statistics:922.2
; Materials Science:951
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85130701010
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335446 |
专题 | 工学院_海洋科学与工程系 |
作者单位 | 1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,Tongji University,Shanghai,201804,China 2.School of Materials Science and Engineering,Tongji University,Shanghai,201804,China 3.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 4.CCCC First Highway Xiamen Engineering Co.,Ltd,Xiamen,361021,China 5.School of Civil and Hydraulic Engineering,Ningxia University,Ningxia,750021,China |
第一作者单位 | 海洋科学与工程系 |
通讯作者单位 | 海洋科学与工程系 |
推荐引用方式 GB/T 7714 |
Zeng,Ziyue,Wei,Yongqi,Wei,Zhenhua,et al. Deep learning enabled particle analysis for quality assurance of construction materials[J]. AUTOMATION IN CONSTRUCTION,2022,140.
|
APA |
Zeng,Ziyue.,Wei,Yongqi.,Wei,Zhenhua.,Yao,Wu.,Wang,Changying.,...&Yang,Jiansen.(2022).Deep learning enabled particle analysis for quality assurance of construction materials.AUTOMATION IN CONSTRUCTION,140.
|
MLA |
Zeng,Ziyue,et al."Deep learning enabled particle analysis for quality assurance of construction materials".AUTOMATION IN CONSTRUCTION 140(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论