中文版 | English
题名

Deep learning enabled particle analysis for quality assurance of construction materials

作者
通讯作者Wei,Yongqi; Wei,Zhenhua
发表日期
2022-08-01
DOI
发表期刊
ISSN
0926-5805
EISSN
1872-7891
卷号140
摘要
Microspheres in fly ash are critically important for determining the properties and performance of fly ash dosed concrete, but facile and cost-effective analysis and quality control of fly ash microspheres remain difficult on construction sites. This paper describes a deep learning method to segment and analyze fly ash spherical particles using a simple optical microscope and a path aggregation network. The proposed method accurately detects microspheres and predicts their particle size distribution and volume fraction, outperforming traditional methods for particle analysis. The predicted results are directly linked to key properties that determine the quality of fly ash. This research establishes an automated and efficient method for rapid job-site fly ash spherical particle analysis, so that inexpensive and handy construction material quality control and assurance can be achieved for infrastructure construction.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China[2019YFC1906203];National Natural Science Foundation of China[51468002];
WOS研究方向
Construction & Building Technology ; Engineering
WOS类目
Construction & Building Technology ; Engineering, Civil
WOS记录号
WOS:000808452200003
出版者
EI入藏号
20222212168534
EI主题词
Cost effectiveness ; Deep learning ; Fly ash ; Light transmission ; Microspheres ; Particle size ; Particle size analysis ; Quality assurance ; Quality control ; Size distribution
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Light/Optics:741.1 ; Industrial Economics:911.2 ; Quality Assurance and Control:913.3 ; Mathematical Statistics:922.2 ; Materials Science:951
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85130701010
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335446
专题工学院_海洋科学与工程系
作者单位
1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,Tongji University,Shanghai,201804,China
2.School of Materials Science and Engineering,Tongji University,Shanghai,201804,China
3.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.CCCC First Highway Xiamen Engineering Co.,Ltd,Xiamen,361021,China
5.School of Civil and Hydraulic Engineering,Ningxia University,Ningxia,750021,China
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
推荐引用方式
GB/T 7714
Zeng,Ziyue,Wei,Yongqi,Wei,Zhenhua,et al. Deep learning enabled particle analysis for quality assurance of construction materials[J]. AUTOMATION IN CONSTRUCTION,2022,140.
APA
Zeng,Ziyue.,Wei,Yongqi.,Wei,Zhenhua.,Yao,Wu.,Wang,Changying.,...&Yang,Jiansen.(2022).Deep learning enabled particle analysis for quality assurance of construction materials.AUTOMATION IN CONSTRUCTION,140.
MLA
Zeng,Ziyue,et al."Deep learning enabled particle analysis for quality assurance of construction materials".AUTOMATION IN CONSTRUCTION 140(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng,Ziyue]的文章
[Wei,Yongqi]的文章
[Wei,Zhenhua]的文章
百度学术
百度学术中相似的文章
[Zeng,Ziyue]的文章
[Wei,Yongqi]的文章
[Wei,Zhenhua]的文章
必应学术
必应学术中相似的文章
[Zeng,Ziyue]的文章
[Wei,Yongqi]的文章
[Wei,Zhenhua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。