题名 | FGAM: A pluggable light-weight attention module for medical image segmentation |
作者 | |
通讯作者 | Hu,Yan; Liu,Jiang |
共同第一作者 | Qiu,Zhongxi; Hu,Yan |
发表日期 | 2022-07-01
|
DOI | |
发表期刊 | |
ISSN | 0010-4825
|
EISSN | 1879-0534
|
卷号 | 146 |
摘要 | Medical image segmentation is fundamental for computer-aided diagnosis or surgery. Various attention modules are proposed to improve segmentation results, which exist some limitations for medical image segmentation, such as large computations, weak framework applicability, etc. To solve the problems, we propose a new attention module named FGAM, short for Feature Guided Attention Module, which is a simple but pluggable and effective module for medical image segmentation. The FGAM tries to dig out the feature representation ability in the encoder and decoder features. Specifically, the decoder shallow layer always contains abundant information, which is taken as a queryable feature dictionary in the FGAM. The module contains a parameter-free activator and can be deleted after various encoder-decoder networks’ training. The efficacy of the FGAM is proved on various encoder-decoder models based on five datasets, including four publicly available datasets and one in-house dataset. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 共同第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[8210072776]
|
WOS研究方向 | Life Sciences & Biomedicine - Other Topics
; Computer Science
; Engineering
; Mathematical & Computational Biology
|
WOS类目 | Biology
; Computer Science, Interdisciplinary Applications
; Engineering, Biomedical
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000807109900001
|
出版者 | |
EI入藏号 | 20222112147618
|
EI主题词 | Decoding
; Image Enhancement
; Image Segmentation
; Medical Image Processing
; Network Coding
|
EI分类号 | Biomedical Engineering:461.1
; Information Theory And Signal Processing:716.1
; Data Processing And Image Processing:723.2
; Computer Applications:723.5
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85130448164
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335456 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,51805,China 2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,China 3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,51805,China 4.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,Guangdong,51805,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Qiu,Zhongxi,Hu,Yan,Zhang,Jiayi,et al. FGAM: A pluggable light-weight attention module for medical image segmentation[J]. COMPUTERS IN BIOLOGY AND MEDICINE,2022,146.
|
APA |
Qiu,Zhongxi,Hu,Yan,Zhang,Jiayi,Chen,Xiaoshan,&Liu,Jiang.(2022).FGAM: A pluggable light-weight attention module for medical image segmentation.COMPUTERS IN BIOLOGY AND MEDICINE,146.
|
MLA |
Qiu,Zhongxi,et al."FGAM: A pluggable light-weight attention module for medical image segmentation".COMPUTERS IN BIOLOGY AND MEDICINE 146(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
1-s2.0-S001048252200(6153KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论