中文版 | English
题名

FGAM: A pluggable light-weight attention module for medical image segmentation

作者
通讯作者Hu,Yan; Liu,Jiang
共同第一作者Qiu,Zhongxi; Hu,Yan
发表日期
2022-07-01
DOI
发表期刊
ISSN
0010-4825
EISSN
1879-0534
卷号146
摘要

Medical image segmentation is fundamental for computer-aided diagnosis or surgery. Various attention modules are proposed to improve segmentation results, which exist some limitations for medical image segmentation, such as large computations, weak framework applicability, etc. To solve the problems, we propose a new attention module named FGAM, short for Feature Guided Attention Module, which is a simple but pluggable and effective module for medical image segmentation. The FGAM tries to dig out the feature representation ability in the encoder and decoder features. Specifically, the decoder shallow layer always contains abundant information, which is taken as a queryable feature dictionary in the FGAM. The module contains a parameter-free activator and can be deleted after various encoder-decoder networks’ training. The efficacy of the FGAM is proved on various encoder-decoder models based on five datasets, including four publicly available datasets and one in-house dataset.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 共同第一 ; 通讯
资助项目
National Natural Science Foundation of China[8210072776]
WOS研究方向
Life Sciences & Biomedicine - Other Topics ; Computer Science ; Engineering ; Mathematical & Computational Biology
WOS类目
Biology ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology
WOS记录号
WOS:000807109900001
出版者
EI入藏号
20222112147618
EI主题词
Decoding ; Image Enhancement ; Image Segmentation ; Medical Image Processing ; Network Coding
EI分类号
Biomedical Engineering:461.1 ; Information Theory And Signal Processing:716.1 ; Data Processing And Image Processing:723.2 ; Computer Applications:723.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85130448164
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335456
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,51805,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,China
3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,51805,China
4.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,Guangdong,51805,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qiu,Zhongxi,Hu,Yan,Zhang,Jiayi,et al. FGAM: A pluggable light-weight attention module for medical image segmentation[J]. COMPUTERS IN BIOLOGY AND MEDICINE,2022,146.
APA
Qiu,Zhongxi,Hu,Yan,Zhang,Jiayi,Chen,Xiaoshan,&Liu,Jiang.(2022).FGAM: A pluggable light-weight attention module for medical image segmentation.COMPUTERS IN BIOLOGY AND MEDICINE,146.
MLA
Qiu,Zhongxi,et al."FGAM: A pluggable light-weight attention module for medical image segmentation".COMPUTERS IN BIOLOGY AND MEDICINE 146(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-s2.0-S001048252200(6153KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qiu,Zhongxi]的文章
[Hu,Yan]的文章
[Zhang,Jiayi]的文章
百度学术
百度学术中相似的文章
[Qiu,Zhongxi]的文章
[Hu,Yan]的文章
[Zhang,Jiayi]的文章
必应学术
必应学术中相似的文章
[Qiu,Zhongxi]的文章
[Hu,Yan]的文章
[Zhang,Jiayi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。