中文版 | English
题名

A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge

作者
DOI
发表日期
2022
会议名称
25th Design, Automation and Test in Europe Conference and Exhibition (DATE)
ISSN
1530-1591
ISBN
978-1-6654-9637-7
会议录名称
页码
730-735
会议日期
14-23 March 2022
会议地点
Antwerp, Belgium
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Optimized model and energy-efficient hardware are both required for deep neural networks (DNNs) in edge-computing area. Neural architecture search (NAS) methods are employed for DNN model optimization with resulted multi-precision networks. Previous works have proposed low-precision-combination (LPC) and high-precision-split (HPS) methods for multi-precision networks, which are not energy-efficient for precision-scalable vector implementation. In this paper, a bit-split-and-combination (BSC) based vector systolic accelerator is developed for a precision-scalable energy-efficient convolution on edge. The maximum energy efficiency of the proposed BSC vector processing element (PE) is up to 1.95× higher in 2-bit, 4-bit and 8-bit operations when compared with LPC and HPS PEs. Further with NAS optimized multi-precision CNN networks, the averaged energy efficiency of the proposed vector systolic BSC PE array achieves up to 2.18× higher in 2-bit, 4-bit and 8-bit operations than that of LPC and HPS PE arrays.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Science and Technology Program[KQTD20200820113051096]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Engineering, Industrial ; Engineering, Electrical & Electronic
WOS记录号
WOS:000819484300140
EI入藏号
20222212172784
EI主题词
Deep neural networks ; Energy efficiency ; Systolic arrays
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Energy Conservation:525.2 ; Algebra:921.1
Scopus记录号
2-s2.0-85130858962
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9774679
引用统计
被引频次[WOS]:10
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335500
专题工学院_深港微电子学院
作者单位
School of Microelectronics,Southern University of Science and Technology,Shenzhen,China
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Li,Kai,Zhou,Junzhuo,Wang,Yuhang,et al. A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:730-735.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Kai]的文章
[Zhou,Junzhuo]的文章
[Wang,Yuhang]的文章
百度学术
百度学术中相似的文章
[Li,Kai]的文章
[Zhou,Junzhuo]的文章
[Wang,Yuhang]的文章
必应学术
必应学术中相似的文章
[Li,Kai]的文章
[Zhou,Junzhuo]的文章
[Wang,Yuhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。