中文版 | English
题名

Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning

作者
通讯作者Yu,James J.Q.
DOI
发表日期
2022
会议名称
IEEE Wireless Communications and Networking Conference (IEEE WCNC)
ISSN
1525-3511
ISBN
978-1-6654-4267-1
会议录名称
卷号
2022-April
页码
2041-2046
会议日期
10-13 April 2022
会议地点
Austin, TX, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

The existing Federated Learning (FL) systems encounter an enormous communication overhead when employing GNN-based models for traffic forecasting tasks since these models commonly incorporate enormous number of parameters to be transmitted in the FL systems. In this paper, we propose a FL framework, namely, C lustering-based hierarchical and T wo-step- optimized FL (CTFL), to overcome this practical problem. CTFL employs a divide-and-conquer strategy, clustering clients based on the closeness of their local model parameters. Furthermore, we incorporate the particle swarm optimization algorithm in CTFL, which employs a two-step strategy for optimizing local models. This technique enables the central server to upload only one representative local model update from each cluster, thus reducing the communication overhead associated with model update transmission in the FL. Comprehensive case studies on two real-world datasets and two state-of-the-art GNN-based models demonstrate the proposed framework's outstanding training efficiency and prediction accuracy, and the hyperparameter sensitivity of CTFL is also investigated.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Stable Support Plan Program of Shenzhen Natural Science Fund[20200925155105002]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000819473100344
EI入藏号
20222212167080
EI主题词
Efficiency ; Forecasting ; Graph Neural Networks ; Learning Systems ; Particle Swarm Optimization (PSO)
EI分类号
Computer Software, Data HAndling And Applications:723 ; Artificial Intelligence:723.4 ; Production Engineering:913.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85130755538
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9771883
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335506
专题前沿与交叉科学研究院
作者单位
1.Southern University of Science and Technology,Dept. of Computer Science and Engineering,Shenzhen,China
2.Southern University of Science and Technology,Academy for Advanced Interdisciplinary Studies,Shenzhen,China
3.University of Technology Sydney,School of Computer Science,Sydney,Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Chenhan,Zhang,Shiyao,Yu,Shui,et al. Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:2041-2046.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Graph-Based_Traffic_(2239KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Chenhan]的文章
[Zhang,Shiyao]的文章
[Yu,Shui]的文章
百度学术
百度学术中相似的文章
[Zhang,Chenhan]的文章
[Zhang,Shiyao]的文章
[Yu,Shui]的文章
必应学术
必应学术中相似的文章
[Zhang,Chenhan]的文章
[Zhang,Shiyao]的文章
[Yu,Shui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。