题名 | Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE Wireless Communications and Networking Conference (IEEE WCNC)
|
ISSN | 1525-3511
|
ISBN | 978-1-6654-4267-1
|
会议录名称 | |
卷号 | 2022-April
|
页码 | 2041-2046
|
会议日期 | 10-13 April 2022
|
会议地点 | Austin, TX, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The existing Federated Learning (FL) systems encounter an enormous communication overhead when employing GNN-based models for traffic forecasting tasks since these models commonly incorporate enormous number of parameters to be transmitted in the FL systems. In this paper, we propose a FL framework, namely, C lustering-based hierarchical and T wo-step- optimized FL (CTFL), to overcome this practical problem. CTFL employs a divide-and-conquer strategy, clustering clients based on the closeness of their local model parameters. Furthermore, we incorporate the particle swarm optimization algorithm in CTFL, which employs a two-step strategy for optimizing local models. This technique enables the central server to upload only one representative local model update from each cluster, thus reducing the communication overhead associated with model update transmission in the FL. Comprehensive case studies on two real-world datasets and two state-of-the-art GNN-based models demonstrate the proposed framework's outstanding training efficiency and prediction accuracy, and the hyperparameter sensitivity of CTFL is also investigated. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Stable Support Plan Program of Shenzhen Natural Science Fund[20200925155105002]
|
WOS研究方向 | Computer Science
; Engineering
; Telecommunications
|
WOS类目 | Computer Science, Information Systems
; Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000819473100344
|
EI入藏号 | 20222212167080
|
EI主题词 | Efficiency
; Forecasting
; Graph Neural Networks
; Learning Systems
; Particle Swarm Optimization (PSO)
|
EI分类号 | Computer Software, Data HAndling And Applications:723
; Artificial Intelligence:723.4
; Production Engineering:913.1
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85130755538
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9771883 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335506 |
专题 | 前沿与交叉科学研究院 |
作者单位 | 1.Southern University of Science and Technology,Dept. of Computer Science and Engineering,Shenzhen,China 2.Southern University of Science and Technology,Academy for Advanced Interdisciplinary Studies,Shenzhen,China 3.University of Technology Sydney,School of Computer Science,Sydney,Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang,Chenhan,Zhang,Shiyao,Yu,Shui,et al. Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:2041-2046.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Graph-Based_Traffic_(2239KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论