[1] RELEASE N. WHO publishes list of bacteria for which new antibiotics are urgently needed[J]. Neurosciences,2017,38(4):444-445.
[2] LYCZAK JB, CANNON CL, PIER GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist[J]. Microbes and Infection,2000,2(9): 1051-1060.
[3] WEE BA, TAI AS, SHERRARD LJ, et al. Infection With Transmissible Strains of Pseudomonas aeruginosa and Clinical Outcomes in Adults With Cystic Fibrosis[J]. American Medical Association, 2010,304(19):2145–2153.
[4] TAM VH , ROGERS CA , CHANG KT , et al. Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes[J]. Antimicrobial Agents & Chemotherapy,2010,54(9):3717-3722.
[5] WILLIAMS BJ, DEHNBOSTEL J, BLACKWELL TS. Pseudomonas aeruginosa: host defence in lung diseases[J].Respirology,2010,15(7):1037-1056.
[6] ROSSI GONCALVES I, DANTAS R CC, FERREIRA ML, et al. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation[J]. Brazilian Journal of Microbiology,2017,48(2):211-217.
[7] VIDAILLAC C, CHOTIRMALL SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies[J].Expert Review of Respiratory Medicine, 2021,15(5):649-662.
[8] FLUME PA, CHALMERS JD, OLIVIER KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity[J].The Lancet,2018, 392(10150):880-890.
[9] AKIR E , ABDILLAHI FK , ATABEK AA , et al. Diagnostic contribution of PICADAR score in etiological evaluation of patients with bronchiectasis of unknown etiology[J].European Respiratory Journal, 2018,52(62): 793-801.
[10] TREDGET EE, SHANKOWSKY HA, RENNIE R, et al. Pseudomonas infections in the thermally injured patient[J].Burns:Journal of the International Society for Burn Injuries,2004,30(1):3-26.
[11] JAMES GA, SWOGGER E, WOLCOTT R, et al. Biofilms in chronic wounds[J]. Wound Repair & Regeneration,2010,16(1):37-44.
[12] THADEN JT, PARK LP, MASKARINEC SA, et al. Results from a 13-Year Prospective Cohort Study Show Increased Mortality Associated with Bloodstream Infections Caused by Pseudomonas aeruginosa Compared to Other Bacteria[J]. Antimicrob Agents Chemother, 2017, 61(6):445-467.
[13] LAMAS FERREIRO JL, ÁLVAREZ OTERO J, GONZÁLEZ GONZÁLEZ L, et al. Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors[J]. Plos One, 2017, 12(5): 178-187.
[14] NORBURY W, HERNDON DN, TANKSLEY J, et al. Infection in Burns[J].Surgical Infections,2016,17(2): 250-255.
[15] GELLATLY SL, HANCOCK RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses[J].Pathogens and Disease,2013,67(3):159-173.
[16] KAZMIERCZAK BI, SCHNIEDERBEREND M, JAIN R. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence[J]. Current Opinion in Microbiology, 2015,28(7):78-82.
[17] MOURA-ALVES P, PUYSKENS A, STINN A, et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection[J]. Science, 2019, 366(6472):160-180.
[18] RAETZ CR, WHITFIELD C. Lipopolysaccharide endotoxins[J]. Annual Review of Biochemistry,2002,71:635-700.
[19] THIMT T, WIBOWO D, REHM BH. Pseudomonas aeruginosa Biofilms[J]. International Journal of Molecular Sciences, 2020, 21(22):234-280.
[20] MORADALI MF, GHODS S, REHM BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence[J].Frontiers in Cellular and Infection Microbiology,2017,7(3):39-56.
[21] NADELL CD, DRESCHER K, FOSTER KR. Spatial structure, cooperation and competition in biofilms[J]. Nature Reviews Microbiology, 2016,25(14):589-600.
[22] DESVAUX M, HéBRAUD M, TALON R, et al. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue[J]. Trends in Microbiology, 2009, 17(4): 139-145.
[23] HALTE M, ERHARDT M. Protein Export via the Type III Secretion System of the Bacterial Flagellum[J]. Biomolecules, 2021, 11(2):167-209.
[24] COSTA T R D, HARB L, KHARA P, et al. Type IV Secretion Systems: Advances in Structure, Function, and Activation[J]. Molecular Microbiology. 2021,115(3):436-452.
[25] RIVERA-CALZADA A, FAMELIS N, LLORCA O, et al. Type VII secretion systems: structure, functions and transport models[J].Nature Reviews Microbiology, 2021, 19(9): 567-584.
[26] HACHANI A, WOOD TE, FILLOUX A. Type VI secretion and anti-host effectors[J]. Current Opinion in Microbiology, 2016, 29(60): 81-93.
[27] STEFAN P, AMY T M, DEREK S, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5):1528-1533.
[28] BINGLE LE, BAILEY CM, PALLEN MJ. Type VI secretion: a beginner's guide[J]. Current Opinion in Microbiology, 2008,11(1): 3-8.
[29] JANA B, SALOMON D. Type VI secretion system: a modular toolkit for bacterial dominance[J]. Future Microbiology, 2019,14(16): 1451-1463.
[30] FRASER A, PROKHOROV N S, JIAO F, et al. Quantitative description of a contractile macromolecular machine[J].Science advances,2021,7(24):209-213.
[31] DAR Y, JANA B, BOSIS E, et al. A binary effector module secreted by a type VI secretion system[J]. EMBO Reports, 2022,5,23(1):539-581.
[32] GALLEGOS-MONTERROSA R, COULTHURST S J. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system[J]. FEMS Microbiology Reviews,2021,45(6):33-45.
[33] BOOPATHI S, LIU D, JIA AQ. Molecular trafficking between bacteria determines the shape of gut microbial community[J]. Gut Microbes, 2021, 13(1): 1959841-1959855.
[34] ROBITAILLE S, TRUS E, ROSS B D. Bacterial Defense against the Type VI Secretion System[J]. Trends in Microbiology, 2021, 29(3): 187-190.
[35] HO B , DONG TG , MEKALANOS J . A View to a Kill: The Bacterial Type VI Secretion System[J].Cell Host & Microbe,2014,15(1):9-21.
[36] CIANFANELLI FR, MONLEZUN L, COULTHURST SJ. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon [J]. Trends in Microbiology, 2016, 24(1): 51-62.
[37] ZOUED A , DURAND E , BEBEACUA C , et al. TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System[J].Journal of Biological Chemistry, 2013, 288(38): 27031-27041.
[38] LEIMAN PG, BASLER M, RAMAGOPAL UA, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin[J]. Proceedings of the National Academy of Sciences, USA, 2009, 106(11): 4154-4159.
[39] BÖNEMANN G, PIETROSIUK A, MOGK A. Tubules and donuts: a type VI secretion story[J]. Molecular Microbiology, 2010, 76(4): 815-821.
[40] DURAND E, ZOUED A, SPINELLI S, et al. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems[J]. The Journal of Biological Chemistry, 2012, 287(17): 14157-14168.
[41] HOOD RD, SINGH P, HSU FS, et al. A Type VI Secretion System of Pseudomonas aeruginosa Targets a Toxin to Bacteria[J]. Cell Host & Microbe, 2010, 7(1): 25-37.
[42] MANERA K, KAMAL F, BURKINSHAW B, et al. Essential functions of chaperones and adaptors of protein secretion systems in Gram-negative bacteria[J]. The FEBS Journal,2021,1(14):34-79.
[43] SANA T, BERNI B, BLEVES S. The T6SSs of Pseudomonas aeruginosa Strain PA01 and Their Effectors: Beyond Bacterial-Cell Targeting[J]. Front Cell Infect Microbiol, 2016,15(6):61-70.
[44] RUSSELL AB, HOOD RD, BUI NK, et al. Type VI secretion delivers bacteriolytic effectors to target cells [J]. Nature, 2011, 475(7356): 343-357.
[45] MA LS, HACHANI A, LIN JS, et al. Agrobacterium tumefaciens deploysa superfamily of type VI secretion DNase effectors as weapons forinter bacterial competition in planta[J]. Cell Host Microbe,2016,16(1):94-104..
[46] QUENTIN D, AHMAD S, SHANTHAMOORTHY P, et al. Mechanism of loading and translocation of type VI secretion system effector Tse6[J]. Nature Microbiology,2018, 3(10):1142-1152..
[47] SEE-YEUN T , BOSCH DE , MANGIAMELI SM , et al. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins[J].Cell, 2019, 2018, 175(5):1380-1392.
[48] YANG X, LONG M, SHEN X. Effector⁻Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities[J].Molecules,2018,23(5):1009-1015.
[49] ZHENG J, HO B, MEKALANOS JJ. Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae[J]. Plos One, 2011, 6(8):789-791.
[50] ALTERI CJ, MOBLEY HL . The Versatile Type VI Secretion System [J]. Microbiology Spectrum, 2016, 4(2):689-697.
[51] PENA RT, BLASCO L, AMBROA A, et al. Relationship Between Quorum Sensing and Secretion Systems[J]. Frontiers in Microbiology, 2019, 10(45):1100-1118.
[52] CHEN L, ZOU Y, SHE P, et al. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa[J]. Microbiological Research, 2015,172(8):19-25..
[53] ISHIKAWA T, ROMPIKUNTAL PK, LINDMARK B, et al. Quorum Sensing Regulation of the Two hcp Alleles in Vibrio cholerae O1 Strains[J]. Plos One, 2009, 4(8):67-89.
[54] MOSCOSO JA, MIKKELSEN H, HEEB S, et al. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling[J].Environ Microbiol, 2011,13(12):3128-3138.
[55] CHAKRABORTY S, SIVARAMAN J, LEUNG KY, et al. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda[J]. The Journal of Biological Chemistry, 2011, 286(45): 39417-39430.
[56] HAN Y, WANG T, CHEN G, et al. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition[J].PLoS Pathogens,2019,15(12): 100-118.
[57] CASTANG S, MCMANUS HR, TURNER KH, et al. H-NS family members function coordinately in an opportunistic pathogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(48): 18947-18952.
[58] LAPOUGE K, SCHUBERT M, ALLAIN FH, et al. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour[J]. Molecular Microbiology, 2008, 67(2): 241-253.
[59] MOSCOSO JA , MIKKELSEN H , HEEB S , et al. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling[J]. Environmental Microbiology, 2011, 13(12):34-56.
[60] SILVERMAN JM, AUSTIN LS, HSU F, et al. Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation[J]. Molecular Microbiology, 2011, 82(5): 1277-1290.
[61] FILLOUX A, HACHANI A, BLEVES JM. The bacterial type VI secretion machine: yet another player for protein transport across membranes[J].Microbiology, 2008, 154(6):1570-1583.
[62] HOWARD SA, FURNISSR CD, BONINI D, et al. The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery[J]. Molecular Biosystems, 2021,12(3):221-262.
[63] WHITNEY JC, BECK CM, GOO YA, et al. Genetically distinct pathways guide effector export through the type VI secretion system[J]. Molecular Microbiology, 2014, 92(3):529-542.
[64] PISSARIDOU P, ALLSOPP LP, WETTSTADT S, et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(49):56-61.
[65] NOLAN LM, CAIN AK, CLAMENS T, et al. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells[J]. Nature Microbiology, 2021, 6(9): 1199-1210.
[66] BERNI B, SOSCIA C, DJERMOUN S, et al. A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa[J]. Frontiers in Microbiology, 2019, 10(8): 1218-1222.
[67] RUSSELL AB, LEROUX M, HATHAZI K, et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors[J].Nature,2013, 496(7446):508-512
[68] JIANG F, WATERFIELD NICHOLAS R, YANG J, et al. A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells[J]. Cell Host & Microbe, 2014, 15(5): 600-610.
[69] FENG J, XIA W, BEI W, et al. The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress[J].Cell Reports, 2016, 67(16):1502–1509.
[70] DONG TG , HO B , YODER-HIMES DR , et al. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(7):2623-2628.
[71] KAMAL F, LIANG X, MANERA K, et al. Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System[J]. Cell Reports, 2020,31(11):107766-107777.
[72] LANSBURY L, LIM B, BASKARAN V, et al. Co-infections in people with COVID-19: a systematic review and meta-analysis[J]. The Journal of Infection,2020,81(2): 266-275.
[73] QU J, CAI Z, LIU Y, et al. Persistent Bacterial Coinfection of a COVID-19 Patient Caused by a Genetically Adapted Pseudomonas aeruginosa Chronic Colonizer [J]. Frontiers in Cellular and Infection Microbiology,2021,11(7):641920-641933.
[74] KOVACH ME, ELZER PH, STEVEN HILL D, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes[J].Gene,1995, 166(1):175-186.
[75] HEEB S, BLUMER C, HAAS D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0 [J]. Journal of Bacteriology, 2002, 184(4):1046-1056.
[76] HOANG TT, KUTCHMA AJ, BECHER A, et al. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains[J]. Plasmid, 2000, 43(1):59-72.
[77] SCHAFER A, TAUCH A, JAGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1): 69-73.
[78] HMELO LR, BORLEE BR, ALMBLAD H, et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange[J]. Nature Protocols, 2015, 10(11): 1820-1841.
[79] ANDERS S, MCCARTHY DJ, CHEN Y, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nature Protocols, 2013, 8(9): 1765-1786.
[80] ZIA MA, SHAH MS, SHAFQAT AR, et al. High level expression and purification of recombinant 3ABC non-structural protein of foot-and-mouth disease virus using SUMO fusion system[J]. Protein Expression and Purification,2022,191(6): 106025-106034.
[81] ZOTTIG X, MEDDEB-MOUELHI F, BEAUREGARD M. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B[J]. Analytical Biochemistry,2016,496(7):25-29.
[82] TIGERSTROM RG, STELMASCHUK S. The use of Tween 20 in a sensitive turbidimetric assay of lipolytic enzymes[J]. Canadian Journal of Microbiology, 1989, 35(4):511-514.
[83] JECKELMANN JM, ERNI B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System[J].Sub-cellular Biochemistry, 2019,92(6): 223-274.
[84] GEHRING AM, MORI I, WALSH CT. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF[J]. Biochemistry, 1998, 37(8):2648-2659.
[85] MARTIN P, TRONNET S, GARCIE C, et al. Interplay between siderophores and colibactin genotoxin in Escherichia coli[J]. Iubmb Life, 2017, 69(6): 435-441.
[86] CROSS AR, CSATARY EE, RAGHURAM V, et al. The histone-like protein AlgP regulon is distinct in mucoid and nonmucoid Pseudomonas aeruginosa and does not include alginate biosynthesis genes[J]. Microbiology, 2020,166(9):56-78.
[87] BAHAR AA, LIU Z, TOTSINGAN F, et al. Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa[J].Applied Microbiology and Biotechnology, 2015, 99(19): 8125-8135.
[88] WANG G, ZHAO G, CHAO X, et al. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae[J].International Journal of Environmental Research and Public Health, 2020, 17(17):145-234.
[89] HARDING CM, HENNON SW, FELDMAN MF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nature Reviews Microbiology, 2018, 16(2): 91-102.
[90] WEBER BS, MIYATA ST, IWASHKIW JA, et al. Genomic and functional analysis of the type VI secretion system in acinetobacter [J]. Plos One, 2013, 8(1): 142-155.
[91] CHEN F, ZHANG W, SCHWARZ S, et al. Genetic characterization of an MDR/virulence genomic element carrying two T6SS gene clusters in a clinical Klebsiella pneumoniae isolate of swine origin[J].Journal of Antimicrobial Chemotherapy, 2019, 74(6): 1539-1544.
[92] RANGEL K, CHAGAS T PG, DE-SIMONE SG. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic[J]. Pathogens, 2021, 10(8):1006-1018.
[93] ARCARI G, RAPONI G, SACCO F, et al. Klebsiella pneumoniae infections in COVID-19 patients: a 2-month retrospective analysis in an Italian hospital[J]. International Journal of Antimicrobial Agents, 2021, 57(1):106245-106256.
[94] WILDERMAN PJ, VASIL AI, JOHNSON Z, et al. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model[J]. Molecular Microbiology, 2010, 39 (2):291-304.
[95] QU J, CAI Z, DUAN X, et al. Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients[J]. Cell & Bioscience, 2022, 12(1): 14-26.
[96] HAN M-J, YUN H, LEE S Y. Microbial small heat shock proteins and their use in biotechnology [J]. Biotechnology Advances, 2008, 26(6): 591-609.
[97] GUZZO J. Biotechnical applications of small heat shock proteins from bacteria[J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(10): 1698-1705.
[98] WANG T, DU X, JI L, et al. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis[J]. Cell Reports, 2021, 35(2): 108957-108964.
[99] WANG S, GENG Z, ZHANG H, et al. The Pseudomonas aeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector [J]. The FEBS Journal, 2021, 288(19): 5755-5767.
修改评论