中文版 | English
题名

铜绿假单胞菌Ⅵ型分泌系统效应因子 TseL 的功能鉴定

其他题名
CHARACTERIZATION OF EFFECTOR TSEL IN PSEUDOMONAS AERUGINOSA TYPE Ⅵ SECRETION SYSTEM
姓名
姓名拼音
JIA Minlu
学号
11930129
学位类型
硕士
学位专业
071005 微生物学
学科门类/专业学位类别
07 理学
导师
杨亮
导师单位
南方科技大学医学院
论文答辩日期
2022-05-09
论文提交日期
2022-06-11
学位授予单位
南方科技大学
学位授予地点
南方科技大学
摘要

铜绿假单胞菌是一种常见的条件致病菌,经常引起住院病人的院内感染,同时也是COVID-19患者中常见的并发感染病原体。Ⅵ型分泌系统(T6SS)是铜绿假单胞菌重要的毒力机制,它负责向竞争微生物或宿主细胞注入多种毒力效应因子。前期,在COVID-19患者痰液样本中分离得到一株高毒力的铜绿假单胞菌临床菌株LYSZa7。通过对LYSZa7基因组注释分析,本研究发现了一个潜在的T6SS的脂酶效应因子基因簇,并且该基因簇广泛存在于铜绿假单胞菌中,但在实验室模型株PAO1/PA14中不存在。本项目确认了该效应因子的脂酶功能和关键结构域,将编码该效应因子的基因命名为tseL。随后,对TseL的功能分析发现,TseL靶向细菌周质引起膜损伤效应,参与铜绿假单胞菌的种内和种间竞争,同时能够靶向宿主细胞。另外,铜绿假单胞菌LYSZa7还编码两个可以中和其毒性的免疫蛋白基因(tsiP1tsiP2)。这两个免疫蛋白通过生物化学结合均能保护细菌自身免受TseL的伤害。综上所述,本项目发现了在铜绿假单胞菌临床菌株致病性和竞争中起到作用的T6SS效应蛋白TseL及其免疫蛋白,并提出TseL在种内/间竞争发挥一定作用并且能够增加对细胞的感染性。该研究成果为铜绿假单胞菌临床菌株的流行病学鉴定提供了新的分子标记。

其他摘要

Pseudomonas aeruginosa is a predominant opportunistic pathogen that often causes nosocomial infections in hospitalized patients. It is identified as a common coinfecting pathogen in COVID-19 patients causing exacerbation of illness. The type VI secretion system (T6SS) is an important virulence mechanism of P. aeruginosa, and it is responsible for injection of numerous virulence effectors into competing microbes or host cells. This work identified a T6SS effector, TseL, from a clinical P. aeruginosa strain LYSZa7, which is isolated from sputum samples of a COVID-19 patient. Also, this effector was found ubiquitous in P. aeruginosa but not in the lab model strain PAO1/PA14. The TseL contains a lipase domain and was proved to have T6SS-dependent lipase activity. The TseL contributed to intra- and inter-species competition by targeting bacterial periplasm to cause membrane damages. TseL also contributed to P. aeruginosa LYSZa7 virulence against eukaryotic cells. Moreover, P. aeruginosa LYSZa7 genome also encodes two immunity protein genes (tsiP1, tsiP2) in the same gene cluster, which were shown to neutralize the TseL toxicity to protect the host bacterial cells. Taken together, our findings showed that the novel P. aeruginosa T6SS-delivered phospholipase effector TseL is active against both prokaryotic and eukaryotic cells, highlighting the diversity of effectors of the T6SS systems in the Pseudomonas aeruginosa clinical strains. This study provides a new molecular marker for the epidemiological identification of clinical strains of P. aeruginosa.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] RELEASE N. WHO publishes list of bacteria for which new antibiotics are urgently needed[J]. Neurosciences,2017,38(4):444-445.
[2] LYCZAK JB, CANNON CL, PIER GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist[J]. Microbes and Infection,2000,2(9): 1051-1060.
[3] WEE BA, TAI AS, SHERRARD LJ, et al. Infection With Transmissible Strains of Pseudomonas aeruginosa and Clinical Outcomes in Adults With Cystic Fibrosis[J]. American Medical Association, 2010,304(19):2145–2153.
[4] TAM VH , ROGERS CA , CHANG KT , et al. Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes[J]. Antimicrobial Agents & Chemotherapy,2010,54(9):3717-3722.
[5] WILLIAMS BJ, DEHNBOSTEL J, BLACKWELL TS. Pseudomonas aeruginosa: host defence in lung diseases[J].Respirology,2010,15(7):1037-1056.
[6] ROSSI GONCALVES I, DANTAS R CC, FERREIRA ML, et al. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation[J]. Brazilian Journal of Microbiology,2017,48(2):211-217.
[7] VIDAILLAC C, CHOTIRMALL SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies[J].Expert Review of Respiratory Medicine, 2021,15(5):649-662.
[8] FLUME PA, CHALMERS JD, OLIVIER KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity[J].The Lancet,2018, 392(10150):880-890.
[9] AKIR E , ABDILLAHI FK , ATABEK AA , et al. Diagnostic contribution of PICADAR score in etiological evaluation of patients with bronchiectasis of unknown etiology[J].European Respiratory Journal, 2018,52(62): 793-801.
[10] TREDGET EE, SHANKOWSKY HA, RENNIE R, et al. Pseudomonas infections in the thermally injured patient[J].Burns:Journal of the International Society for Burn Injuries,2004,30(1):3-26.
[11] JAMES GA, SWOGGER E, WOLCOTT R, et al. Biofilms in chronic wounds[J]. Wound Repair & Regeneration,2010,16(1):37-44.
[12] THADEN JT, PARK LP, MASKARINEC SA, et al. Results from a 13-Year Prospective Cohort Study Show Increased Mortality Associated with Bloodstream Infections Caused by Pseudomonas aeruginosa Compared to Other Bacteria[J]. Antimicrob Agents Chemother, 2017, 61(6):445-467.
[13] LAMAS FERREIRO JL, ÁLVAREZ OTERO J, GONZÁLEZ GONZÁLEZ L, et al. Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors[J]. Plos One, 2017, 12(5): 178-187.
[14] NORBURY W, HERNDON DN, TANKSLEY J, et al. Infection in Burns[J].Surgical Infections,2016,17(2): 250-255.
[15] GELLATLY SL, HANCOCK RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses[J].Pathogens and Disease,2013,67(3):159-173.
[16] KAZMIERCZAK BI, SCHNIEDERBEREND M, JAIN R. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence[J]. Current Opinion in Microbiology, 2015,28(7):78-82.
[17] MOURA-ALVES P, PUYSKENS A, STINN A, et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection[J]. Science, 2019, 366(6472):160-180.
[18] RAETZ CR, WHITFIELD C. Lipopolysaccharide endotoxins[J]. Annual Review of Biochemistry,2002,71:635-700.
[19] THIMT T, WIBOWO D, REHM BH. Pseudomonas aeruginosa Biofilms[J]. International Journal of Molecular Sciences, 2020, 21(22):234-280.
[20] MORADALI MF, GHODS S, REHM BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence[J].Frontiers in Cellular and Infection Microbiology,2017,7(3):39-56.
[21] NADELL CD, DRESCHER K, FOSTER KR. Spatial structure, cooperation and competition in biofilms[J]. Nature Reviews Microbiology, 2016,25(14):589-600.
[22] DESVAUX M, HéBRAUD M, TALON R, et al. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue[J]. Trends in Microbiology, 2009, 17(4): 139-145.
[23] HALTE M, ERHARDT M. Protein Export via the Type III Secretion System of the Bacterial Flagellum[J]. Biomolecules, 2021, 11(2):167-209.
[24] COSTA T R D, HARB L, KHARA P, et al. Type IV Secretion Systems: Advances in Structure, Function, and Activation[J]. Molecular Microbiology. 2021,115(3):436-452.
[25] RIVERA-CALZADA A, FAMELIS N, LLORCA O, et al. Type VII secretion systems: structure, functions and transport models[J].Nature Reviews Microbiology, 2021, 19(9): 567-584.
[26] HACHANI A, WOOD TE, FILLOUX A. Type VI secretion and anti-host effectors[J]. Current Opinion in Microbiology, 2016, 29(60): 81-93.
[27] STEFAN P, AMY T M, DEREK S, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5):1528-1533.
[28] BINGLE LE, BAILEY CM, PALLEN MJ. Type VI secretion: a beginner's guide[J]. Current Opinion in Microbiology, 2008,11(1): 3-8.
[29] JANA B, SALOMON D. Type VI secretion system: a modular toolkit for bacterial dominance[J]. Future Microbiology, 2019,14(16): 1451-1463.
[30] FRASER A, PROKHOROV N S, JIAO F, et al. Quantitative description of a contractile macromolecular machine[J].Science advances,2021,7(24):209-213.
[31] DAR Y, JANA B, BOSIS E, et al. A binary effector module secreted by a type VI secretion system[J]. EMBO Reports, 2022,5,23(1):539-581.
[32] GALLEGOS-MONTERROSA R, COULTHURST S J. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system[J]. FEMS Microbiology Reviews,2021,45(6):33-45.
[33] BOOPATHI S, LIU D, JIA AQ. Molecular trafficking between bacteria determines the shape of gut microbial community[J]. Gut Microbes, 2021, 13(1): 1959841-1959855.
[34] ROBITAILLE S, TRUS E, ROSS B D. Bacterial Defense against the Type VI Secretion System[J]. Trends in Microbiology, 2021, 29(3): 187-190.
[35] HO B , DONG TG , MEKALANOS J . A View to a Kill: The Bacterial Type VI Secretion System[J].Cell Host & Microbe,2014,15(1):9-21.
[36] CIANFANELLI FR, MONLEZUN L, COULTHURST SJ. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon [J]. Trends in Microbiology, 2016, 24(1): 51-62.
[37] ZOUED A , DURAND E , BEBEACUA C , et al. TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System[J].Journal of Biological Chemistry, 2013, 288(38): 27031-27041.
[38] LEIMAN PG, BASLER M, RAMAGOPAL UA, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin[J]. Proceedings of the National Academy of Sciences, USA, 2009, 106(11): 4154-4159.
[39] BÖNEMANN G, PIETROSIUK A, MOGK A. Tubules and donuts: a type VI secretion story[J]. Molecular Microbiology, 2010, 76(4): 815-821.
[40] DURAND E, ZOUED A, SPINELLI S, et al. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems[J]. The Journal of Biological Chemistry, 2012, 287(17): 14157-14168.
[41] HOOD RD, SINGH P, HSU FS, et al. A Type VI Secretion System of Pseudomonas aeruginosa Targets a Toxin to Bacteria[J]. Cell Host & Microbe, 2010, 7(1): 25-37.
[42] MANERA K, KAMAL F, BURKINSHAW B, et al. Essential functions of chaperones and adaptors of protein secretion systems in Gram-negative bacteria[J]. The FEBS Journal,2021,1(14):34-79.
[43] SANA T, BERNI B, BLEVES S. The T6SSs of Pseudomonas aeruginosa Strain PA01 and Their Effectors: Beyond Bacterial-Cell Targeting[J]. Front Cell Infect Microbiol, 2016,15(6):61-70.
[44] RUSSELL AB, HOOD RD, BUI NK, et al. Type VI secretion delivers bacteriolytic effectors to target cells [J]. Nature, 2011, 475(7356): 343-357.
[45] MA LS, HACHANI A, LIN JS, et al. Agrobacterium tumefaciens deploysa superfamily of type VI secretion DNase effectors as weapons forinter bacterial competition in planta[J]. Cell Host Microbe,2016,16(1):94-104..
[46] QUENTIN D, AHMAD S, SHANTHAMOORTHY P, et al. Mechanism of loading and translocation of type VI secretion system effector Tse6[J]. Nature Microbiology,2018, 3(10):1142-1152..
[47] SEE-YEUN T , BOSCH DE , MANGIAMELI SM , et al. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins[J].Cell, 2019, 2018, 175(5):1380-1392.
[48] YANG X, LONG M, SHEN X. Effector⁻Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities[J].Molecules,2018,23(5):1009-1015.
[49] ZHENG J, HO B, MEKALANOS JJ. Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae[J]. Plos One, 2011, 6(8):789-791.
[50] ALTERI CJ, MOBLEY HL . The Versatile Type VI Secretion System [J]. Microbiology Spectrum, 2016, 4(2):689-697.
[51] PENA RT, BLASCO L, AMBROA A, et al. Relationship Between Quorum Sensing and Secretion Systems[J]. Frontiers in Microbiology, 2019, 10(45):1100-1118.
[52] CHEN L, ZOU Y, SHE P, et al. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa[J]. Microbiological Research, 2015,172(8):19-25..
[53] ISHIKAWA T, ROMPIKUNTAL PK, LINDMARK B, et al. Quorum Sensing Regulation of the Two hcp Alleles in Vibrio cholerae O1 Strains[J]. Plos One, 2009, 4(8):67-89.
[54] MOSCOSO JA, MIKKELSEN H, HEEB S, et al. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling[J].Environ Microbiol, 2011,13(12):3128-3138.
[55] CHAKRABORTY S, SIVARAMAN J, LEUNG KY, et al. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda[J]. The Journal of Biological Chemistry, 2011, 286(45): 39417-39430.
[56] HAN Y, WANG T, CHEN G, et al. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition[J].PLoS Pathogens,2019,15(12): 100-118.
[57] CASTANG S, MCMANUS HR, TURNER KH, et al. H-NS family members function coordinately in an opportunistic pathogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(48): 18947-18952.
[58] LAPOUGE K, SCHUBERT M, ALLAIN FH, et al. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour[J]. Molecular Microbiology, 2008, 67(2): 241-253.
[59] MOSCOSO JA , MIKKELSEN H , HEEB S , et al. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling[J]. Environmental Microbiology, 2011, 13(12):34-56.
[60] SILVERMAN JM, AUSTIN LS, HSU F, et al. Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation[J]. Molecular Microbiology, 2011, 82(5): 1277-1290.
[61] FILLOUX A, HACHANI A, BLEVES JM. The bacterial type VI secretion machine: yet another player for protein transport across membranes[J].Microbiology, 2008, 154(6):1570-1583.
[62] HOWARD SA, FURNISSR CD, BONINI D, et al. The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery[J]. Molecular Biosystems, 2021,12(3):221-262.
[63] WHITNEY JC, BECK CM, GOO YA, et al. Genetically distinct pathways guide effector export through the type VI secretion system[J]. Molecular Microbiology, 2014, 92(3):529-542.
[64] PISSARIDOU P, ALLSOPP LP, WETTSTADT S, et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(49):56-61.
[65] NOLAN LM, CAIN AK, CLAMENS T, et al. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells[J]. Nature Microbiology, 2021, 6(9): 1199-1210.
[66] BERNI B, SOSCIA C, DJERMOUN S, et al. A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa[J]. Frontiers in Microbiology, 2019, 10(8): 1218-1222.
[67] RUSSELL AB, LEROUX M, HATHAZI K, et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors[J].Nature,2013, 496(7446):508-512
[68] JIANG F, WATERFIELD NICHOLAS R, YANG J, et al. A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells[J]. Cell Host & Microbe, 2014, 15(5): 600-610.
[69] FENG J, XIA W, BEI W, et al. The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress[J].Cell Reports, 2016, 67(16):1502–1509.
[70] DONG TG , HO B , YODER-HIMES DR , et al. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(7):2623-2628.
[71] KAMAL F, LIANG X, MANERA K, et al. Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System[J]. Cell Reports, 2020,31(11):107766-107777.
[72] LANSBURY L, LIM B, BASKARAN V, et al. Co-infections in people with COVID-19: a systematic review and meta-analysis[J]. The Journal of Infection,2020,81(2): 266-275.
[73] QU J, CAI Z, LIU Y, et al. Persistent Bacterial Coinfection of a COVID-19 Patient Caused by a Genetically Adapted Pseudomonas aeruginosa Chronic Colonizer [J]. Frontiers in Cellular and Infection Microbiology,2021,11(7):641920-641933.
[74] KOVACH ME, ELZER PH, STEVEN HILL D, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes[J].Gene,1995, 166(1):175-186.
[75] HEEB S, BLUMER C, HAAS D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0 [J]. Journal of Bacteriology, 2002, 184(4):1046-1056.
[76] HOANG TT, KUTCHMA AJ, BECHER A, et al. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains[J]. Plasmid, 2000, 43(1):59-72.
[77] SCHAFER A, TAUCH A, JAGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1): 69-73.
[78] HMELO LR, BORLEE BR, ALMBLAD H, et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange[J]. Nature Protocols, 2015, 10(11): 1820-1841.
[79] ANDERS S, MCCARTHY DJ, CHEN Y, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nature Protocols, 2013, 8(9): 1765-1786.
[80] ZIA MA, SHAH MS, SHAFQAT AR, et al. High level expression and purification of recombinant 3ABC non-structural protein of foot-and-mouth disease virus using SUMO fusion system[J]. Protein Expression and Purification,2022,191(6): 106025-106034.
[81] ZOTTIG X, MEDDEB-MOUELHI F, BEAUREGARD M. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B[J]. Analytical Biochemistry,2016,496(7):25-29.
[82] TIGERSTROM RG, STELMASCHUK S. The use of Tween 20 in a sensitive turbidimetric assay of lipolytic enzymes[J]. Canadian Journal of Microbiology, 1989, 35(4):511-514.
[83] JECKELMANN JM, ERNI B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System[J].Sub-cellular Biochemistry, 2019,92(6): 223-274.
[84] GEHRING AM, MORI I, WALSH CT. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF[J]. Biochemistry, 1998, 37(8):2648-2659.
[85] MARTIN P, TRONNET S, GARCIE C, et al. Interplay between siderophores and colibactin genotoxin in Escherichia coli[J]. Iubmb Life, 2017, 69(6): 435-441.
[86] CROSS AR, CSATARY EE, RAGHURAM V, et al. The histone-like protein AlgP regulon is distinct in mucoid and nonmucoid Pseudomonas aeruginosa and does not include alginate biosynthesis genes[J]. Microbiology, 2020,166(9):56-78.
[87] BAHAR AA, LIU Z, TOTSINGAN F, et al. Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa[J].Applied Microbiology and Biotechnology, 2015, 99(19): 8125-8135.
[88] WANG G, ZHAO G, CHAO X, et al. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae[J].International Journal of Environmental Research and Public Health, 2020, 17(17):145-234.
[89] HARDING CM, HENNON SW, FELDMAN MF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nature Reviews Microbiology, 2018, 16(2): 91-102.
[90] WEBER BS, MIYATA ST, IWASHKIW JA, et al. Genomic and functional analysis of the type VI secretion system in acinetobacter [J]. Plos One, 2013, 8(1): 142-155.
[91] CHEN F, ZHANG W, SCHWARZ S, et al. Genetic characterization of an MDR/virulence genomic element carrying two T6SS gene clusters in a clinical Klebsiella pneumoniae isolate of swine origin[J].Journal of Antimicrobial Chemotherapy, 2019, 74(6): 1539-1544.
[92] RANGEL K, CHAGAS T PG, DE-SIMONE SG. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic[J]. Pathogens, 2021, 10(8):1006-1018.
[93] ARCARI G, RAPONI G, SACCO F, et al. Klebsiella pneumoniae infections in COVID-19 patients: a 2-month retrospective analysis in an Italian hospital[J]. International Journal of Antimicrobial Agents, 2021, 57(1):106245-106256.
[94] WILDERMAN PJ, VASIL AI, JOHNSON Z, et al. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model[J]. Molecular Microbiology, 2010, 39 (2):291-304.
[95] QU J, CAI Z, DUAN X, et al. Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients[J]. Cell & Bioscience, 2022, 12(1): 14-26.
[96] HAN M-J, YUN H, LEE S Y. Microbial small heat shock proteins and their use in biotechnology [J]. Biotechnology Advances, 2008, 26(6): 591-609.
[97] GUZZO J. Biotechnical applications of small heat shock proteins from bacteria[J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(10): 1698-1705.
[98] WANG T, DU X, JI L, et al. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis[J]. Cell Reports, 2021, 35(2): 108957-108964.
[99] WANG S, GENG Z, ZHANG H, et al. The Pseudomonas aeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector [J]. The FEBS Journal, 2021, 288(19): 5755-5767.

所在学位评定分委会
医学院
国内图书分类号
R37-8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335670
专题南方科技大学医学院
推荐引用方式
GB/T 7714
贾敏鹭. 铜绿假单胞菌Ⅵ型分泌系统效应因子 TseL 的功能鉴定[D]. 南方科技大学. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930129-贾敏鹭-南方科技大学医(6573KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贾敏鹭]的文章
百度学术
百度学术中相似的文章
[贾敏鹭]的文章
必应学术
必应学术中相似的文章
[贾敏鹭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。