[1] MIKKOLA J H. Portfolio Management of R&D Projects: Implications for Innovation Management[J]. Technovation, 2001, 21(7): 423435.
[2] STEWART T J, JANSSEN R. A Multiobjective GISbased Land Use Planning Algorithm[J].Comput. Environ. Urban Syst., 2014, 4: 2534.
[3] DEB K, SUNDAR J. Reference Point Based Multiobjective Optimization Using Evolutionary Algorithms[C]//Proc. of the 8th annual conference on Genetic and evolutionary computation. 2006: 635642.
[4] DEB K. Multiobjective Optimization Using Evolutionary Algorithms[M]. John Wiley & Sons, Inc., 2001.
[5] YAN X, CAI B, NING B, et al. Moving Horizon Optimization of Dynamic Trajectory Planning for Highspeed Train Operation[J]. IEEE Trans. Intell. Transp. Syst., 2016, 17(5): 12581270.
[6] NGUYEN S, ZHANG M, JOHNSTON M, et al. Automatic Design of Scheduling Policies for Dynamic Multiobjective Job Shop Scheduling Via Cooperative Coevolution Genetic Programming[J]. IEEE Trans. Evol. Comput., 2014, 18(2): 193208.
[7] LIANG J J, YUE C T, QU B Y. Multimodal Multiobjective Optimization: A Preliminary Study [C]//Proc. of 2016 IEEE Congress on Evolutionary Computation. 2016: 24542461.
[8] SCHÜTZE O, VASILE M, COELLO C A C. Computing the Set of Epsilonefficient Solutions in Multiobjective Space Mission Design[J]. J. Aerosp. Comput. Inf. Commun., 2011, 8(3): 5370.
[9] JASZKIEWICZ A. On the Performance of Multipleobjective Genetic Local Search on the 0/1 Knapsack Problem a Comparative Experiment[J]. IEEE Trans. Evol. Comput., 2002, 6(4): 402412.
[10] TIAN Y, LIU R, ZHANG X, et al. A Multipopulation Evolutionary Algorithm for Solving Largescale Multimodal Multiobjective Optimization Problems[J]. IEEE Tran. Evol. Comput., 2020, 25(3): 405418.
[11] EMMERICH M T, DEUTZ A H. A Tutorial on Multiobjective Optimization: Fundamentals and Evolutionary Methods[J]. Nat Comput., 2018(17): 585609.
[12] DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGAII[J]. IEEE Trans. Evol. Comput., 2002, 6(2): 182197.
[13] CORNE D W, JERRAM N R, KNOWLES J D, et al. PESAII: Regionbased Selection in Evolutionary Multiobjective Optimization[C]//Proc. of the 3rd Annual Conference on Genetic and Evolutionary Computation. 2001: 283290.
[14] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm[J]. TIKreport, 2001, 103.
[15] ZITZLER E, SIMON K. Indicatorbased Selection in Multiobjective Search[C]//Proc. of Parallel Problem Solving from Nature PPSN VIII. 2004: 832842.
[16] BEUME N, NAUJOKS B, EMMERICH M. SMSEMOA: Multiobjective Selection Based on Dominated Hypervolume[J]. Eur .J. Oper. Res., 2007, 181(3): 16531669.
[17] ZITZLER E, THIELE L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach[J]. IEEE Trans. Evol. Comput., 1999, 3(4): 257271.
[18] ZHANG Q, LI H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[J]. IEEE Trans. Evol. Comput., 2007, 11(6): 712731.
[19] COELLO C A C, SIERRA M R. A Study of the Parallelization of a Coevolutionary Multiobjective Evolutionary Algorithm[C]//Proc. of MICAI 2004: Advances in Artificial Intelligence. 2004: 688697.
[20] SHANG K, ISHIBUCHI H, NI X. R2based Hypervolume Contribution Approximation[J].IEEE Trans. Evol. Comput., 2020, 24(1): 185192.
[21] ISHIBUCHI H, IMADA R, SETOGUCHI Y, et al. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison[J]. Evol. Comput., 2018, 26(3): 411440.
[22] BADER J, ZITZLER E. HypE: An Algorithm for Fast Hypervolumebased Manyobjective Optimization[J]. Evol. Comput., 2011, 19(1): 4576.
[23] ISHIBUCHI H, MASUDA H, TANIGAKI Y, et al. Modified Distance Calculation in Generational Distance and Inverted Generational Distance[C]//Proc. of Evolutionary MultiCriterion Optimization. 2015: 110125.
[24] NGUYEN T T. Continuous Dynamic Optimization Using Evolutionary Algorithms[D]. The University of Birmingham, 2010.
[25] RAQUEL C, YAO X. Dynamic Multiobjective Optimization: A Survey of the Stateoftheart [M]//Evolutionary Computation for Dynamic Optimization Problems. Springer, 2013: 85106.
[26] DEB K, N. U B R, KARTHIK S. Dynamic Multiobjective Optimization and Decisionmaking Using Modified NSGAII: A Case Study on Hydrothermal Power Scheduling[C]//Proc. of Evolutionary MultiCriterion Optimization. 2007: 803817.
[27] MORRISON R W. Designing Evolutionary Algorithms for Dynamic Environments[M].Springer, 2004.
[28] JIANG S, YANG S. A Steadystate and Generational Evolutionary Algorithm for Dynamic Multiobjective Optimization[J]. IEEE Trans. Evol. Comput., 2016, 21(1): 6582.
[29] GOH C, TAN K C. A Competitivecooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization[J]. IEEE Trans. Evol. Comput., 2008, 13(1): 103127.
[30] AZZOUZ R, BECHIKH S, SAID L B. A Dynamic Multiobjective Evolutionary Algorithm Using a Change Severitybased Adaptive Population Management Strategy[J]. Soft Comput., 2017, 21: 885906.
[31] HATZAKIS I, WALLACE D. Dynamic Multiobjective Optimization with Evolutionary Algorithms: A Forwardlooking Approach[C]//Proc. of the 8th Annual Conference on Genetic and Evolutionary Computation. 2006: 12011208.
[32] LI Q, ZOU J, YANG S, et al. A Predictive Strategy Based on Special Points for Evolutionary Dynamic Multiobjective Optimization[J]. Soft Comput., 2019, 23: 37233739.
[33] RUAN G, YU G, ZHENG J, et al. The Effect of Diversity Maintenance on Prediction in Dynamic Multiobjective Optimization[J]. Appl. Soft Comput., 2017, 58: 631647.
[34] BRANKE J, KAUSSLER T, SMIDT C, et al. A Multipopulation Approach to Dynamic Optimization Problems[C]//Proc. of Evolutionary Design and Manufacture. 2000: 299307.
[35] SHIR O M. Niching in Evolutionary Algorithms[M]//Handbook of Natural Computing.Springer, 2012: 10351069.
[36] LIU Y, ISHIBUCHI H, NOJIMA Y, et al. A Doubleniched Evolutionary Algorithm and Its Behavior on Polygonbased Problems[C]//Proc. of Parallel Problem Solving from Nature PPSNXV. 2018: 262273.
[37] GOLDBERG D E, RICHARDSON J. Genetic Algorithms with Sharing for Multimodal Function Optimization[C]//Proc. of the Second International Conference on Genetic Algorithms and Their Application. 1987: 4149.
[38] LIN Q, LIN W, ZHU Z, et al. Multimodal Multiobjective Evolutionary Optimization with Dual Clustering in Decision and Objective Spaces[J]. IEEE Trans. Evol. Comput., 2021, 25(1): 130144.
[39] DEB K, TIWARI S. Omnioptimizer: A Generic Evolutionary Algorithm for Single and Multiobjective Optimization[J]. Eur. J. Oper. Res., 2008, 185(3): 10621087.
[40] YUE C, QU B, LIANG J. A Multiobjective Particle Swarm Optimizer Using Ring Topology for Solving Multimodal Multiobjective Problems[J]. IEEE Trans. Evol. Comput., 2018, 22(5): 805817.
[41] TANABE R, ISHIBUCHI H. A Review of Evolutionary Multimodal Multiobjective Optimization[J]. IEEE Trans. Evol. Comput., 2020, 24(1): 193200.
[42] ZHOU A, ZHANG Q, JIN Y. Approximating the Set of Paretooptimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm[J]. IEEE Trans. Evol. Comput., 2009, 13(5): 11671189.
[43] PENG Y, ISHIBUCHI H, SHANG K. Multimodal Multiobjective Optimization: Problem Analysis and Case Studies[C]//Proc. of IEEE Symposium Series on Computational Intelligence. 2019: 18651872.
[44] TANABE R, ISHIBUCHI H. A Decompositionbased Evolutionary Algorithm for Multimodal Multiobjective Optimization[C]//Proc. of Parallel Problem Solving from Nature PPSN XV. 2018: 249261.
[45] HU C, ISHIBUCHI H. Incorporation of a Decision Space Diversity Maintenance Mechanism into MOEA/D for Multimodal Multiobjective Optimization[C]//Proc. of Genetic and Evolutionary Computation Conference Companion. 2018: 18981901.
[46] PETROWSKI A. A Clearing Procedure As a Niching Method for Genetic Algorithms[C]//Proc.of IEEE International Conference on Evolutionary Computation. 1996: 798803.
[47] ISHIBUCHI H, PENG Y. A Scalable Multimodal Multiobjective Test Problem[C]//Proc. of 2019 IEEE Congress on Evolutionary Computation. 2019: 302309.
[48] RUDOLPH G, NAUJOKS B, PREUSS M. Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets[C]//Proc. of 2007 International Conference on Evolutionary MultiCriterion Optimization. 2007: 3650.
[49] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A MATLAB Platform for Evolutionary Multiobjective Optimization[J]. IEEE Comput. Intell. Mag., 2017, 12(4): 7387.
[50] MAHFOUND S W. Crowding and Preselection Revisited[C]//Proc. of Parallel Problem Solving from Nature PPSN II. 1992: 2736.
[51] LI H, ZHANG Q. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGAII[J]. IEEE Trans. Evol. Comput., 2009, 13(2): 284302.
[52] STORN R, PRICE K. Differential Evolution – a Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces[J]. J. Global Optim., 1997, 11: 341359.
[53] EPITROPAKIS M G, PLAGIANAKOS V P, VRAHATIS M N. Finding Multiple Global Optima Exploiting Differential Evolution’s Niching Capability[C]//Proc. of 2011 IEEE Symposium on Differential Evolution. 2011: 18.
[54] URSEM R K. Multinational Evolutionary Algorithms[C]//Proc. of the 1999 IEEE Congress on Evolutionary Computation. 1999: 16331640.
[55] SINGH H K, BHATTACHARJEE K S, RAY T. Distancebased Subset Selection for Benchmarking in Evolutionary Multi/manyobjective Optimization[J]. IEEE Trans. Evol. Comput., 2019, 23(5): 904912.
[56] TANABE R, ISHIBUCHI H, OYAMA A. Benchmarking Multi and Manyobjective Evolutionary Algorithms under Two Optimization Scenarios[J]. IEEE Access, 2017, 5: 1959719619.
[57] YUE C, QU B, YU K, et al. A Novel Scalable Test Problem Suite for Multimodal Multiobjective Optimization[J]. Swarm Evol. Comput., 2019, 48: 6271.
[58] LI M, YANG S, LIU X. Shiftbased Density Estimation for Paretobased Algorithms in Manyobjective Optimization[J]. IEEE Trans. Evol. Comput., 2014, 18(3): 348365.
[59] SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. CRC press, 1986.
[60] GRIMME C, KERSCHKE P, TRAUTMANN H. Multimodality in Multiobjective Optimization – More Boon Than Bane?[C]//Proc. Evol. Multi Crit. Optim. 2019: 126138.
[61] KERSCHKE P, WANG H, PREUSS M, et al. Search Dynamics on Multimodal Multiobjective Problems[J]. Evol. Comput., 2019, 27(4): 577609.
[62] BRINGMANN K, FRIEDRICH T, KLITZKE P. Generic Postprocessing Via Subset Selection for Hypervolume and Epsilonindicator[C]//Proc. Int. Conf. Parallel Probl. Solving. Nat. 2014: 518527.
[63] BRINGMANN K, FRIEDRICH T. Approximating the Volume of Unions and Intersections of Highdimensional Geometric Objects[J]. Comput. Geom., 2010, 43(6–7): 601610.
[64] CHEN W, ISHIBUCHI H, SHANG K. Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets[C]//Proc. Int. Conf. Congr. Evol. Comput. 2020: 18.
[65] BRINGMANN K, FRIEDRICH T. An Efficient Algorithm for Computing Hypervolume Contributions[J]. Evol. Comput., 2010, 3(3): 383402.
[66] DEB K, JAIN H. An Evolutionary Manyobjective Optimization Algorithm Using Referencepointbased Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints [J]. IEEE Trans. Evol. Comput., 2014, 18(4): 577601.
[67] DAS I. On Characterizing the “knee” of the Pareto Curve Based on Normalboundary Intersection[J]. Struct. Optim., 1999, 18(2): 107115.
[68] CHENG R, JIN Y, OLHOFER M, et al. A Reference Vector Guided Evolutionary Algorithm for Manyobjective Optimization[J]. IEEE Trans. Evol. Comput., 2016, 20(5): 773791.
[69] DAS I, DENNIS J E. Normalboundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems[J]. SIAM J. Optim., 1998, 8(3): 631657.
[70] BLANK J, DEB K, DHEBAR Y, et al. Generating Wellspaced Points on a Unit Simplex for Evolutionary Manyobjective Optimization[J]. IEEE Trans. Evol. Comput., 2020.
[71] CHEN W, ISHIBUCHI H, SHANG K. Modified Distancebased Subset Selection for Evolutionary Multiobjective Optimization Algorithms[C]//Proc. Int. Conf. Congr. Evol. Comput. 2020: 18.
[72] SHIR O M, PREUSS M, NAUJOKS B, et al. Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms[C]//Proc. Evol. Multi Crit. Optim. 2009: 95109.
[73] HANSEN N, OSTERMEIER A. Completely Derandomized Selfadaptation in Evolution Strategies[J]. Evol. Comput., 2001, 9(2): 159195.
[74] ULRICH T, BADER J, THIELE L. Defining and Optimizing Indicatorbased Diversity Measures in Multiobjective Search[C]//Proc. of Parallel Problem Solving from Nature – PPSN XI. 2010: 707717.
[75] SOLOW A R, POLASKY S. Measuring Biological Diversity[J]. Environ. Ecol. Stat., 1994, 1:95103.
[76] CHAN K P, RAY T. An Evolutionary Algorithm to Maintain Diversity in the Parametric and the Objective Space[C]//Proc. Int. Conf. Comput. Robot. Auton. Syst. 2005: 16.
[77] ESTER M, KRIEGEL H P, SANDER J, et al. A Densitybased Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proc. Data Min. Knowl. Discov. 1996: 226231.
[78] ZHANG K, CHEN M, XU X, et al. Multiobjective Evolution Strategy for Multimodal Multiobjective Optimization[J]. Appl. Soft Comput., 2021, 101: 107004.
[79] ISHIBUCHI H, IMADA R, MASUYAMA N, et al. Comparison of Hypervolume, IGD and + IGD from the Viewpoint of Optimal Distributions of Solutions[C]//Proc. Evol. Multi Crit. Optim. 2009: 332345.
[80] TANABE R, ISHIBUCHI H. An Analysis of Quality Indicators Using Approximated Optimal Distributions in a 3D Objective Space[J]. IEEE Trans. Evol. Comput., 2020, 24(5): 853867.
[81] ISHIBUCHI H, PANG L M, SHANG K. Solution Subset Selection for Final Decision Making in Evolutionary Multiobjective Optimization[J]. arXiv:2006.08156, 2020.
[82] FRIEDRICH T, NEUMANN F. Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms[J]. Evol. Comput., 2015, 23(4): 543558.
[83] QIAN C, YU Y, ZHOU Z H. Subset Selection by Pareto Optimization[C]//Proc. Adv. Neural Inf. Process. Syst. 2015: 17651773.
[84] QIAN C, SHI J C, YU Y. Parallel Pareto Optimization for Subset Selection[C]//Proc. Int. Jt.Conf. Artif. Intell. 2016: 19391945.
[85] QIAN C. Distributed Pareto Optimization for Largescale Noisy Subset Selection[J]. IEEE Trans. Evol. Comput., 2020, 24(4): 694707.
[86] FARINA M, DEB K, AMATO P. Dynamic Multiobjective Optimization Problems: Test Cases, Approximations, and Applications[J]. IEEE Trans. Evol. Comput., 2004, 5(8): 425442.
[87] JIANG S, YANG S. Evolutionary Dynamic Multiobjective Optimization: Benchmarks and Algorithm Comparisons[J]. IEEE Trans. Cybern., 2017, 47(1).
[88] S.JIANG, S.YANG, X.YAO, et al. Benchmark Problems for CEC’2018 Competition on Dynamic Multiobjective Optimisation[C]//Technical Report. 2018: 249261.
[89] ISHIBUCHI H, MATSUMOTO T, MASUYAMA N, et al. Manyobjective Problems Are Not Always Difficult for Pareto Dominancebased Evolutionary Algorithms[C]//Proc. 24th European Conference on Artificial Intelligence. 2020.
[90] HUBAND S, BARONE L, WHILE L, et al. A Scalable Multiobjective Test Problem Toolkit [C]//Proc. of Evolutionary MultiCriterion Optimization. 2005.
修改评论