[1] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
[2] LARCHER D, Tarascon J M. Towards Greener and More Sustainable Batteries forElectrical Energy Storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[3] WINTER M, BARNETT B, XU K. Before Li Ion Batteries[J]. Chemical Reviews,2018, 118(23): 11433-11456.
[4] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective[J].Journal of the American Chemical Society, 2013, 135(4): 1167-76.
[5] ARMAND M, TARASCON J M. Building Better Batteries[J]. Nature, 2008,451(7179): 652-657.
[6] YOSHINO A. The Birth of the Lithium-Ion Battery[J]. Angew Chemie InternationalEdition, 2012, 51(24): 5798-5800.
[7] ERICKSON E M, GHANTY C, AURBACH D. New Horizons for ConventionalLithium Ion Battery Technology[J]. Journal of Physical Chemistry Letters, 2014,5(19): 3313-3324.
[8] LI M, LU J, CHEN Z, et al. 30 Years of Lithium-Ion Batteries[J]. Advanced Materials,2018, 30(33): e1800561.
[9] DENG D. Li-Ion Batteries: Basics, Progress, and Challenges[J]. Energy Science &Engineering, 2015, 3(5): 385-418.
[10] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistryof Materials, 2010, 22(3): 587-603.
[11] 冯莉原, 宋凌珺, 周兴振, 等. 钴酸锂电池性能研究[J]. 电源技术, 2018, 42(3): 4.342.
[12] MANTHIRAM A. A Reflection on Lithium-Ion Battery Cathode Chemistry[J]. NatureCommunications, 2020, 11(1): 1550.
[13] LYU Y, WU X, WANG K, et al. An Overview on the Advances of LiCoO 2 Cathodesfor Lithium-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982.
[14] TAKAHASHI Y, TODE S, KINOSHITA A, et al. Development of Lithium-IonBatteries with a LiCoO 2 Cathode Toward High Capacity by Elevating ChargingPotential[J]. Journal of The Electrochemical Society, 2008, 155 (7): A537-A541.
[15] 阮丁山, 李斌, 毛林林, 等. 钴酸锂作为锂离子正极材料研究进展[J]. 电源技术,2020, 44(9): 4.
[16] 王伟航. 高电压钴酸锂及三元正极材料的界面改性及性能优化[D]. 电子科技大参考文献61学, 2018.
[17] YANO A, SHIKANO M, UEDA A, et al. LiCoO 2 Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating[J].Journal of The Electrochemical Society, 2016, 164(1): A6116-A6122.
[18] LEVASSEUR S, MÉNÉTRIER M, SUARD E, et al. Evidence for Structural Defects inNon-Stoichiometric HT-LiCoO 2 : Electrochemical, Electronic Properties and 7 Li NMRStudies[J]. Solid State Ionics, 2000, 128(1-4): 11-24.
[19] GOODENOUGH J B. How We Made the Li-Ion Rechargeable Battery[J]. NatureElectronics, 2018, 1(3): 204-204.
[20] VAN DER V A, AYDINOL M K, CEDER G, et al. First-Principles Investigation ofPhase Stability in Li x CoO 2 [J]. Physical Review B, 1998, 58(6): 2975-2987.
[21] MOLENDA J, STOKLOSA A, BAK T. Modification in the Electronic Structure ofCobalt Bronze Li x CoO 2 and the Resulting Electrochemical Properties[J]. Solid StateIonics, 1989, 36(1-2):53-58.
[22] CHEN Z, DAHN J R. Methods to Obtain Excellent Capacity Retention in LiCoO 2Cycled to 4.5 V[J]. Electrochimica Acta, 2004, 49(7): 1079-1090.
[23] LI J, LIN C, WENG M, et al. Structural Origin of The High-Voltage Instability ofLithium Cobalt Oxide[J]. Nature Nanotechnology, 2021, 16(5): 599-605.
[24] AMATUCCI G G, TARASCON J M, KLEIN L C. Cobalt Dissolution in LiCoO 2 -BasedNon-Aqueous Rechargeable Batteries[J]. Solid State Ionics, 1996, 83(1-2): 167-173.
[25] MUKHOPADHYAY A, SHELDON B W. Deformation and Stress in ElectrodeMaterials for Li-Ion Batteries[J]. Progress in Materials Science, 2014, 63: 58-116.
[26] LI S, LI K, ZHENG J, et al. Structural Distortion-Induced Charge GradientDistribution of Co Ions in Delithiated LiCoO 2 Cathode[J]. The journal of physicalchemistry letters, 2019, 10(24): 7537-7546.
[27] KIKKAWA J, TERADA S, GUNJI A, et al. Chemical States of Overcharged LiCoO 2Particle Surfaces and Interiors Observed Using Electron Energy-Loss Spectroscopy[J].The Journal of Physical Chemistry C, 2015, 119(28): 15823-15830.
[28] SEONG W M, YOON K, LEE M H, et al. Unveiling the Intrinsic Cycle Reversibilityof a LiCoO 2 Electrode at 4.8-V Cutoff Voltage through Subtractive SurfaceModification for Lithium-Ion Batteries[J]. Nano letters, 2019, 19(1): 29-37.
[29] SUN C, LIAO X, XIA F, et al. High-Voltage Cycling Induced Thermal Vulnerabilityin LiCoO 2 Cathode: Cation Loss and Oxygen Release Driven by Oxygen VacancyMigration[J]. ACS Nano, 2020, 14(5): 6181-6190.
[30] HU E, LI Q, WANG X, et al. Oxygen-Redox Reactions in LiCoO 2 Cathode without O–O Bonding During Charge-Discharge[J]. Joule, 2021, 5(3): 720-736.
[31] WANG Y, ZHANG Q, XUE Z C, et al. An In Situ Formed Surface Coating LayerEnabling LiCoO 2 with Stable 4.6 V High-Voltage Cycle Performances[J]. Advanced参考文献62Energy Materials, 2020, 10(28): 2001413.
[32] YAN C, XU R, XIAO Y, et al. Toward Critical Electrode/Electrolyte Interfaces inRechargeable Batteries[J]. Advanced Functional Materials, 2020, 30(23): 1909887.
[33] LI Q, WANG Y, WANG X, et al. Investigations on the Fundamental Process ofCathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes[J].ACS Applied Materials & Interfaces, 2020, 12 (2): 2319-2326.
[34] XU, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. ChemicalReviews, 2014, 114(23): 11503-11618.
[35] EDSTRÖM K, GUSTAFSSON T, THOMAS J O. The Cathode-Electrolyte Interface inthe Li-Ion Battery[J]. Electrochimica Acta, 2004, 50(2-3): 397-403.
[36] XU Y, WU H, HE Y, et al. Atomic to Nanoscale Origin of Vinylene CarbonateEnhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-TransmissionElectron Microscopy[J]. Nano letters, 2019, 20(1): 418-425.
[37] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A Carbonate-Free, Sulfone-Based Electrolyte for High-Voltage Li-Ion Batteries[J]. Materials Today, 2018, 21(4):341-353.
[38] MLADENOV M, STOYANOVA R, ZHECHEVA E, et al. Effect of Mg Doping andMgO-Surface Modification on the Cycling Stability of LiCoO 2 Electrodes[J].Electrochemistry Communications, 2001, 3(8): 410-416.
[39] MYUNG S T, KUMAGAI N, KOMABA S, et al. Effects of Al Doping on theMicrostructure of LiCoO 2 Cathode Materials[J]. Solid State Ionics, 2001, 139(1-2):47-56.
[40] RAO M C, HUSSAIN O M. Synthesis and Electrochemical Properties of Ti DopedLiCoO 2 Thin Film Cathodes[J]. Journal of Alloys and Compounds, 2010, 491(1-2):503-506.
[41] ZOU M, YOSHIO M, Gopukumar S, et al. Synthesis of High-Voltage (4.5 V) CyclingDoped LiCoO 2 for Use in Lithium Rechargeable Cells[J]. Chemistry of Materials,2003, 15(25): 4699-4702.
[42] HUANG Y, ZHU Y, FU H, et al. Mg-Pillared LiCoO 2 : Towards Stable Cycling at 4.6V[J]. Angew Chemie International Edition,2021, 60 (9): 4682-4688.
[43] FANG L, WANG M, ZHOU Q, et al. Suppressing Cation Mixing and ImprovingStability by F Doping in Cathode Material LiNiO 2 for Li-Ion Batteries: First-Principles Study[J]. Colloids and Surfaces A Physicochemical and EngineeringAspects, 2020, 600: 124940.
[44] ZHANG J N, LI Q, OUYANG C, et al. Trace Doping of Multiple Elements EnablesStable Battery Cycling of LiCoO 2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
[45] KONG W, ZHANG J, WONG D, et al. Tailoring Co 3d and O 2p Band Centers toInhibit Oxygen Escape for Stable 4.6 V LiCoO 2 Cathodes[J]. Angew ChemieInternational Edition, 2021, 60(52): 27102-27112.
[46] SHOBANA M K. Metal Oxide Coated Cathode Materials for Li Ion Batteries - AReview[J]. Journal of Alloys and Compounds, 2019, 802: 477-487.参考文献63
[47] CHO J, KIM Y J, PARK B. Novel LiCoO 2 Cathode Material with Al 2 O 3 Coating for aLi Ion Cell[J]. Chemistry of Materials, 2000, 12: 3788-3791.
[48] MOON S M, CHANG W, D BYUN, et al. Comparative Studies on ZnO-Coated andUncoated LiCoO 2 Cycled at Various Rates and Temperatures[J]. Current AppliedPhysics, 2010, 10(4): e122-e126.
[49] PAVITHRA S, ARJUNAN P, JAYACHANDRAN M, et al. Investigations onElectrochemical Performance of the Full Cell Fabricated LiCoO 2 Wrapped with MgOand ZnO for Advanced Lithium Ion Battery Applications[J]. Journal of MaterialsScience: Materials in Electronics, 2020, 31(18): 15505-15512.
[50] JAYASREE S S, NAIR S, SANTHANAGOPALAN D. Ultrathin TiO 2 Coating onLiCoO 2 for Improved Electrochemical Performance as Li-Ion Battery Cathode[J].Chemistry Select, 2018, 3(10): 2763-2766.
[51] CHENG T, MA Z, QIAN R, et al. Achieving Stable Cycling of LiCoO 2 at 4.6 V byMultilayer Surface Modification[J]. Advanced Functional Materials, 2021, 31(2):2001974.
[52] SUN Y, HAN J, MYUNG S, et al. Significant Improvement of High Voltage CyclingBehavior AlF 3 -Coated LiCoO 2 Cathode[J]. Electrochemistry Communications, 2006,8(5): 821-826.
[53] WANG X, WU Q, LI S, et al. Lithium-Aluminum-Phosphate Coating Enables Stable4.6 V Cycling Performance of LiCoO 2 at Room Temperature and Beyond[J]. EnergyStorage Materials, 2021, 37: 67-76.
[54] XU D, KANG Y, WANG J, et al. Exploring Synergetic Effects of Vinylene Carbonateand 1,3-Propane Sultone on LiNi 0.6 Mn 0.2 Co 0.2 O 2 /Graphite Cells with Excellent High-Temperature Performance[J]. Journal of Power Sources, 2019, 437: 226929.
[55] GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-Electrolyte Interface inLi-Ion Batteries: Current Understanding and New Insights[J]. Journal of PhysicalChemistry Letters, 2015, 6(22): 4653-4672.
[56] XU N, SHI J, LIU G, et al. Research Progress of Fluorine-Containing ElectrolyteAdditives for Lithium Ion Batteries[J]. Journal of Power Sources Advances, 2021, 7:100043.
[57] KANG Y S, YOON T, LEE S S, et al. 1,3,5-Trihydroxybenzene as a Film-FormingAdditive for High-Voltage Positive Electrode[J]. Electrochemistry Communications,2013, 27(1):26-28.
[58] WANG L, MA Y, QU Y, et al. Influence of Fluoroethylene Carbonate as Co-Solvent参考文献64on the High-Voltage Performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode for Lithium-IonBatteries[J]. Electrochimica Acta, 2016, 191: 8-15.
[59] XUE W, GAO R, SHI Z, et al. Stabilizing Electrode–Electrolyte Interfaces to RealizeHigh-Voltage Li||LiCoO 2 Batteries by a Sulfonamide-Based Electrolyte[J]. Energy &Environmental Science, 2021, 14(11): 6030-6040.
[60] HONG S, HONG B, SONG W, et al. Communication-Lithium Difluorophosphate asan Electrolyte Additive to Improve the High Voltage Performance ofLiNi 0.5 Co 0.2 Mn 0.3 O 2 / Graphite Cell[J]. Journal of the Electrochemical Society, 2018,165(2): A368-A370.
[61] Hamenu L, Madzvamuse A, MOHAMMED L, et al. Benzotriazole as an ElectrolyteAdditive on Lithium-Ion Batteries performance[J]. Journal of Industrial andEngineering Chemistry, 2017, 53: 241-246.
[62] ZHANG J, WANG P F, BAI P, et al. Interfacial Design for 4.6 V High-Voltage Single-Crystalline LiCoO 2 Cathode[J]. Advanced Materials, 2021: 2108353.
[63] 刘智, 董甜甜, 张焕瑞, 等. 锂离子电池高电压正极粘结剂的研究进展[J]. 高分子学报, 2021, 52(3): 18.
[64] MA Y, CHEN K, MA J, et al. A Biomass Based Free Radical Scavenger BinderEndowing a Compatible Cathode Interface for 5 V Lithium-Ion batteries[J]. Energy &Environmental Science, 2019, 12(1): 273-280.
[65] LI G, LING M, YE Y, et al. Acacia Senegal-Inspired Bifunctional Binder forLongevity of Lithium-Sulfur Batteries[J]. Advanced Energy Materials,2015, 5(21):1500878.
[66] ZOU F, MANTHIRAM A. A Review of the Design of Advanced Binders for High-Performance Batteries[J]. Advanced Energy Materials, 2020, 10(45): 2002508.
[67] DONG T, ZHANG H, MA Y, et al. A Well-Designed Water-Soluble BinderEnlightening the 5 V-Class LiNi 0.5 Mn 1.5 O 4 Cathodes[J]. Journal of MaterialsChemistry A, 2019, 7(42): 24594-24601.
[68] YANG J, LI P, ZHONG F, et al. Suppressing Voltage Fading of Li-Rich Oxide Cathodevia Building a Well-Protected and Partially-Protonated Surface by Polyacrylic AcidBinder for Cycle-Stable Li-Ion Batteries[J]. Advanced Energy Materials, 2020, 10(15):1904264.
[69] CHANG B, KIM J, CHO Y, et al. Highly Elastic Binder for Improved Cyclability ofNickel-Rich Layered Cathode Materials in Lithium-Ion Batteries[J]. Advanced Energy参考文献65Materials, 2020, 10(29): 2001069.
[70] LIANG J, CHEN D, ADAIR K, et al. Insight into Prolonged Cycling Life of 4 V All-Solid-State Polymer Batteries by a High-Voltage Stable Binder[J]. Advanced EnergyMaterials, 2020, 11(1): 2002455.
[71] KIM N Y, MOON J, RYOU M H, et al. Amphiphilic Bottlebrush Polymeric Bindersfor High-Mass-Loading Cathodes in Lithium-Ion Batteries[J]. Advanced EnergyMaterials, 2021, 12(1): 2102109.
[72] HITOMI S, KUBOTA K, HORIBA T, et al. Application of Acrylic-Rubber-BasedLatex Binder to High-Voltage Spinel Electrodes of Lithium-Ion Batteries[J].ChemElectroChem, 2019, 6(19): 5070-5079.
[73] MATSUDA Y, KUWATA N, OKAWA T, et al. In Situ Raman Spectroscopy of LiCoO 2Cathode in Li/Li 3 PO 4 /LiCoO 2 All-Solid-State Thin-Film Lithium Battery[J]. SolidState Ionics, 2019, 335: 7-14.
[74] NISHI T, NAKAI H, KITA A. Visualization of the State-of-Charge Distribution in aLiCoO 2 Cathode by In Situ Raman Imaging[J]. Journal of The Electrochemical Society,2013, 160(10): A1785-A1788.
[75] YOON M, DONG Y, YOO Y, et al. Unveiling Nickel Chemistry in Stabilizing High-Voltage Cobalt-Rich Cathodes for Lithium-Ion Batteries[J]. Advanced FunctionalMaterials, 2019, 30 (6): 1907903.
[76] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A Major Constituent of BrownAlgae for Use in High-Capacity Li-Ion Batteries[J]. Science, 2011, 334(6052): 75-79.
[77] ZHANG S, DENG Y, WU Q, et al. Sodium-Alginate-Based Binders for Lithium-RichCathode Materials in Lithium-Ion Batteries to Suppress Voltage and CapacityFading[J]. ChemElectroChem, 2018, 5 (9): 1321-1329.
修改评论