中文版 | English
题名

功能化粘结剂稳定 4.6 V 高电压钴酸锂正极材料的研究

姓名
姓名拼音
HUANG He
学号
11930237
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
卢周广
导师单位
材料科学与工程系
论文答辩日期
2022-04-29
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       随着第五代移动通信技术的快速发展,对高容量锂离子电池的需求日益增加。钴酸锂正极材料由于其超高的压实密度和体积比能量,目前仍主导着便携式电子市场。进一步提高钴酸锂的充电电压可以显著提高比容量,但会引起结构和表面不稳定,使得钴酸锂的循环性能迅速衰减。目前稳定高电压钴酸锂的常用策略是结构掺杂和表面包覆,本论文提出通过功能化粘结剂稳定4.6 V高电压钴酸锂正极材料的新策略。
本文采用具有丰富的硫酸基团的葡聚糖硫酸锂(DSL)粘结剂替代聚偏氟乙烯(PVDF)粘结剂,能够与钴酸锂颗粒表面含氧官能团氢键作用来形成均匀的包覆层,有效抑制界面降解和电解液分解。更重要的是,DSL粘结剂极大提高了钴酸锂表面Co-O键的稳定性,进一步抑制了高电压下有害的相变发生。这些优点共同作用确保了钴酸锂在4.6 V电压下的稳定循环,在0.5 C的倍率下100次循环后仍有93.4 %的高容量保持率。
       本文制备了一系列的水溶性海藻酸盐粘结剂,来抑制钴酸锂在高电压下的容量衰减。其中海藻酸镁粘结剂由于羧基官能团的氢键作用和Mg离子的交联作用,能在钴酸锂颗粒表面形成均匀的包覆层,以起到人工界面的作用来减轻电解液的分解和有害的相变发生。最终显著提高高压钴酸锂的电化学性能,在0.5 C的倍率下300次循环仍有的80.1 %的容量保持率。
       本论文的研究成果证明水溶性功能化粘结剂可有效提升钴酸锂正极材料在4.6 V高截至电压下的循环稳定性。揭示粘结剂特定官能团、阳离子对高电压钴酸锂的稳定机理。这项工作为实现钴酸锂在高电压下的稳定长循环提供了一种简单方案,为其他高电压正极材料的研究开阔了思路。

 

其他摘要

        With the rapid development of 5G technology, the demand of lithium-ion batteries with high capacity is ever-growing. Lithium cobalt oxides (LiCoO2), a promising cathode with high compact density and volumetric energy density still dominates the portable electronic market. Further elevating the charging voltage of LiCoO2 could greatly enhance its practical capacity, but will unavoidably bring about structure and surface instability issues, which greatly deteriorate the cyclability of LiCoO2. At present, bulk doping and surface coating are commonly used to stabilize high-voltage LiCoO2. In this paper, we propose a new strategy for stabilizing 4.6 V high-voltage LiCoO2 via functionalized binders.
        Herein, we propose water-soluble dextran lithium sulfate (DSL) with abundant sulfate acid groups as the binder to replace polyvinylidene fluoride (PVDF). DSL binder can form hydrogen bonds with the oxygen-containing groups on the surface of LiCoO2 to form a uniform coating layer, significantly preventing interface degradation and electrolyte decomposition. More importantly, the DSL binder greatly enhances the stability of superficial Co-O bonds of LiCoO2, further suppressing the detrimental phase transition at high voltage. All these benefits contribute to the stable cycling of LiCoO2 at 4.6 V, with a high capacity retention of 93.4 % at 0.5 C over 100 cycles.
        In addition, A series of water-soluble alginate-based binders were prepared to suppress the capacity fading of high-voltage LiCoO2. Among them, we show that Magnesium alginate (MA) binder owns the hydrogen bonding effect of the rich carboxyl functional groups and the cross-linking effect of Mg ions, which can form a uniform coating layer on the surface of the primary LiCoO2 particles as the artificial interface to alleviate decomposition of electrolyte and harmful phase transition. Consequently, the MA binder can significantly enhance the electrochemical performance of high-voltage LiCoO2, with a high capacity retention of 80.1 % at 0.5 C after 300 cycles.
        In summary, water-soluble functionalized binders have been prepared to enhance the stability of LiCoO2 for lithium-ion batteries at a high cut-off voltage of 4.6 V. After that, the stabilization mechanism of high-voltage LiCoO2 through functional groups and cations of binders have been revealed. More importantly, this work provides a unique method to stabilize the cyclability of high-voltage LiCoO2, and opens up ideas for the research of other high-voltage cathode materials.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
[2] LARCHER D, Tarascon J M. Towards Greener and More Sustainable Batteries forElectrical Energy Storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[3] WINTER M, BARNETT B, XU K. Before Li Ion Batteries[J]. Chemical Reviews,2018, 118(23): 11433-11456.
[4] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective[J].Journal of the American Chemical Society, 2013, 135(4): 1167-76.
[5] ARMAND M, TARASCON J M. Building Better Batteries[J]. Nature, 2008,451(7179): 652-657.
[6] YOSHINO A. The Birth of the Lithium-Ion Battery[J]. Angew Chemie InternationalEdition, 2012, 51(24): 5798-5800.
[7] ERICKSON E M, GHANTY C, AURBACH D. New Horizons for ConventionalLithium Ion Battery Technology[J]. Journal of Physical Chemistry Letters, 2014,5(19): 3313-3324.
[8] LI M, LU J, CHEN Z, et al. 30 Years of Lithium-Ion Batteries[J]. Advanced Materials,2018, 30(33): e1800561.
[9] DENG D. Li-Ion Batteries: Basics, Progress, and Challenges[J]. Energy Science &Engineering, 2015, 3(5): 385-418.
[10] GOODENOUGH J B, KIM Y. Challenges for Rechargeable Li Batteries[J]. Chemistryof Materials, 2010, 22(3): 587-603.
[11] 冯莉原, 宋凌珺, 周兴振, 等. 钴酸锂电池性能研究[J]. 电源技术, 2018, 42(3): 4.342.
[12] MANTHIRAM A. A Reflection on Lithium-Ion Battery Cathode Chemistry[J]. NatureCommunications, 2020, 11(1): 1550.
[13] LYU Y, WU X, WANG K, et al. An Overview on the Advances of LiCoO 2 Cathodesfor Lithium-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982.
[14] TAKAHASHI Y, TODE S, KINOSHITA A, et al. Development of Lithium-IonBatteries with a LiCoO 2 Cathode Toward High Capacity by Elevating ChargingPotential[J]. Journal of The Electrochemical Society, 2008, 155 (7): A537-A541.
[15] 阮丁山, 李斌, 毛林林, 等. 钴酸锂作为锂离子正极材料研究进展[J]. 电源技术,2020, 44(9): 4.
[16] 王伟航. 高电压钴酸锂及三元正极材料的界面改性及性能优化[D]. 电子科技大参考文献61学, 2018.
[17] YANO A, SHIKANO M, UEDA A, et al. LiCoO 2 Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating[J].Journal of The Electrochemical Society, 2016, 164(1): A6116-A6122.
[18] LEVASSEUR S, MÉNÉTRIER M, SUARD E, et al. Evidence for Structural Defects inNon-Stoichiometric HT-LiCoO 2 : Electrochemical, Electronic Properties and 7 Li NMRStudies[J]. Solid State Ionics, 2000, 128(1-4): 11-24.
[19] GOODENOUGH J B. How We Made the Li-Ion Rechargeable Battery[J]. NatureElectronics, 2018, 1(3): 204-204.
[20] VAN DER V A, AYDINOL M K, CEDER G, et al. First-Principles Investigation ofPhase Stability in Li x CoO 2 [J]. Physical Review B, 1998, 58(6): 2975-2987.
[21] MOLENDA J, STOKLOSA A, BAK T. Modification in the Electronic Structure ofCobalt Bronze Li x CoO 2 and the Resulting Electrochemical Properties[J]. Solid StateIonics, 1989, 36(1-2):53-58.
[22] CHEN Z, DAHN J R. Methods to Obtain Excellent Capacity Retention in LiCoO 2Cycled to 4.5 V[J]. Electrochimica Acta, 2004, 49(7): 1079-1090.
[23] LI J, LIN C, WENG M, et al. Structural Origin of The High-Voltage Instability ofLithium Cobalt Oxide[J]. Nature Nanotechnology, 2021, 16(5): 599-605.
[24] AMATUCCI G G, TARASCON J M, KLEIN L C. Cobalt Dissolution in LiCoO 2 -BasedNon-Aqueous Rechargeable Batteries[J]. Solid State Ionics, 1996, 83(1-2): 167-173.
[25] MUKHOPADHYAY A, SHELDON B W. Deformation and Stress in ElectrodeMaterials for Li-Ion Batteries[J]. Progress in Materials Science, 2014, 63: 58-116.
[26] LI S, LI K, ZHENG J, et al. Structural Distortion-Induced Charge GradientDistribution of Co Ions in Delithiated LiCoO 2 Cathode[J]. The journal of physicalchemistry letters, 2019, 10(24): 7537-7546.
[27] KIKKAWA J, TERADA S, GUNJI A, et al. Chemical States of Overcharged LiCoO 2Particle Surfaces and Interiors Observed Using Electron Energy-Loss Spectroscopy[J].The Journal of Physical Chemistry C, 2015, 119(28): 15823-15830.
[28] SEONG W M, YOON K, LEE M H, et al. Unveiling the Intrinsic Cycle Reversibilityof a LiCoO 2 Electrode at 4.8-V Cutoff Voltage through Subtractive SurfaceModification for Lithium-Ion Batteries[J]. Nano letters, 2019, 19(1): 29-37.
[29] SUN C, LIAO X, XIA F, et al. High-Voltage Cycling Induced Thermal Vulnerabilityin LiCoO 2 Cathode: Cation Loss and Oxygen Release Driven by Oxygen VacancyMigration[J]. ACS Nano, 2020, 14(5): 6181-6190.
[30] HU E, LI Q, WANG X, et al. Oxygen-Redox Reactions in LiCoO 2 Cathode without O–O Bonding During Charge-Discharge[J]. Joule, 2021, 5(3): 720-736.
[31] WANG Y, ZHANG Q, XUE Z C, et al. An In Situ Formed Surface Coating LayerEnabling LiCoO 2 with Stable 4.6 V High-Voltage Cycle Performances[J]. Advanced参考文献62Energy Materials, 2020, 10(28): 2001413.
[32] YAN C, XU R, XIAO Y, et al. Toward Critical Electrode/Electrolyte Interfaces inRechargeable Batteries[J]. Advanced Functional Materials, 2020, 30(23): 1909887.
[33] LI Q, WANG Y, WANG X, et al. Investigations on the Fundamental Process ofCathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes[J].ACS Applied Materials & Interfaces, 2020, 12 (2): 2319-2326.
[34] XU, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. ChemicalReviews, 2014, 114(23): 11503-11618.
[35] EDSTRÖM K, GUSTAFSSON T, THOMAS J O. The Cathode-Electrolyte Interface inthe Li-Ion Battery[J]. Electrochimica Acta, 2004, 50(2-3): 397-403.
[36] XU Y, WU H, HE Y, et al. Atomic to Nanoscale Origin of Vinylene CarbonateEnhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-TransmissionElectron Microscopy[J]. Nano letters, 2019, 20(1): 418-425.
[37] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A Carbonate-Free, Sulfone-Based Electrolyte for High-Voltage Li-Ion Batteries[J]. Materials Today, 2018, 21(4):341-353.
[38] MLADENOV M, STOYANOVA R, ZHECHEVA E, et al. Effect of Mg Doping andMgO-Surface Modification on the Cycling Stability of LiCoO 2 Electrodes[J].Electrochemistry Communications, 2001, 3(8): 410-416.
[39] MYUNG S T, KUMAGAI N, KOMABA S, et al. Effects of Al Doping on theMicrostructure of LiCoO 2 Cathode Materials[J]. Solid State Ionics, 2001, 139(1-2):47-56.
[40] RAO M C, HUSSAIN O M. Synthesis and Electrochemical Properties of Ti DopedLiCoO 2 Thin Film Cathodes[J]. Journal of Alloys and Compounds, 2010, 491(1-2):503-506.
[41] ZOU M, YOSHIO M, Gopukumar S, et al. Synthesis of High-Voltage (4.5 V) CyclingDoped LiCoO 2 for Use in Lithium Rechargeable Cells[J]. Chemistry of Materials,2003, 15(25): 4699-4702.
[42] HUANG Y, ZHU Y, FU H, et al. Mg-Pillared LiCoO 2 : Towards Stable Cycling at 4.6V[J]. Angew Chemie International Edition,2021, 60 (9): 4682-4688.
[43] FANG L, WANG M, ZHOU Q, et al. Suppressing Cation Mixing and ImprovingStability by F Doping in Cathode Material LiNiO 2 for Li-Ion Batteries: First-Principles Study[J]. Colloids and Surfaces A Physicochemical and EngineeringAspects, 2020, 600: 124940.
[44] ZHANG J N, LI Q, OUYANG C, et al. Trace Doping of Multiple Elements EnablesStable Battery Cycling of LiCoO 2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
[45] KONG W, ZHANG J, WONG D, et al. Tailoring Co 3d and O 2p Band Centers toInhibit Oxygen Escape for Stable 4.6 V LiCoO 2 Cathodes[J]. Angew ChemieInternational Edition, 2021, 60(52): 27102-27112.
[46] SHOBANA M K. Metal Oxide Coated Cathode Materials for Li Ion Batteries - AReview[J]. Journal of Alloys and Compounds, 2019, 802: 477-487.参考文献63
[47] CHO J, KIM Y J, PARK B. Novel LiCoO 2 Cathode Material with Al 2 O 3 Coating for aLi Ion Cell[J]. Chemistry of Materials, 2000, 12: 3788-3791.
[48] MOON S M, CHANG W, D BYUN, et al. Comparative Studies on ZnO-Coated andUncoated LiCoO 2 Cycled at Various Rates and Temperatures[J]. Current AppliedPhysics, 2010, 10(4): e122-e126.
[49] PAVITHRA S, ARJUNAN P, JAYACHANDRAN M, et al. Investigations onElectrochemical Performance of the Full Cell Fabricated LiCoO 2 Wrapped with MgOand ZnO for Advanced Lithium Ion Battery Applications[J]. Journal of MaterialsScience: Materials in Electronics, 2020, 31(18): 15505-15512.
[50] JAYASREE S S, NAIR S, SANTHANAGOPALAN D. Ultrathin TiO 2 Coating onLiCoO 2 for Improved Electrochemical Performance as Li-Ion Battery Cathode[J].Chemistry Select, 2018, 3(10): 2763-2766.
[51] CHENG T, MA Z, QIAN R, et al. Achieving Stable Cycling of LiCoO 2 at 4.6 V byMultilayer Surface Modification[J]. Advanced Functional Materials, 2021, 31(2):2001974.
[52] SUN Y, HAN J, MYUNG S, et al. Significant Improvement of High Voltage CyclingBehavior AlF 3 -Coated LiCoO 2 Cathode[J]. Electrochemistry Communications, 2006,8(5): 821-826.
[53] WANG X, WU Q, LI S, et al. Lithium-Aluminum-Phosphate Coating Enables Stable4.6 V Cycling Performance of LiCoO 2 at Room Temperature and Beyond[J]. EnergyStorage Materials, 2021, 37: 67-76.
[54] XU D, KANG Y, WANG J, et al. Exploring Synergetic Effects of Vinylene Carbonateand 1,3-Propane Sultone on LiNi 0.6 Mn 0.2 Co 0.2 O 2 /Graphite Cells with Excellent High-Temperature Performance[J]. Journal of Power Sources, 2019, 437: 226929.
[55] GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-Electrolyte Interface inLi-Ion Batteries: Current Understanding and New Insights[J]. Journal of PhysicalChemistry Letters, 2015, 6(22): 4653-4672.
[56] XU N, SHI J, LIU G, et al. Research Progress of Fluorine-Containing ElectrolyteAdditives for Lithium Ion Batteries[J]. Journal of Power Sources Advances, 2021, 7:100043.
[57] KANG Y S, YOON T, LEE S S, et al. 1,3,5-Trihydroxybenzene as a Film-FormingAdditive for High-Voltage Positive Electrode[J]. Electrochemistry Communications,2013, 27(1):26-28.
[58] WANG L, MA Y, QU Y, et al. Influence of Fluoroethylene Carbonate as Co-Solvent参考文献64on the High-Voltage Performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode for Lithium-IonBatteries[J]. Electrochimica Acta, 2016, 191: 8-15.
[59] XUE W, GAO R, SHI Z, et al. Stabilizing Electrode–Electrolyte Interfaces to RealizeHigh-Voltage Li||LiCoO 2 Batteries by a Sulfonamide-Based Electrolyte[J]. Energy &Environmental Science, 2021, 14(11): 6030-6040.
[60] HONG S, HONG B, SONG W, et al. Communication-Lithium Difluorophosphate asan Electrolyte Additive to Improve the High Voltage Performance ofLiNi 0.5 Co 0.2 Mn 0.3 O 2 / Graphite Cell[J]. Journal of the Electrochemical Society, 2018,165(2): A368-A370.
[61] Hamenu L, Madzvamuse A, MOHAMMED L, et al. Benzotriazole as an ElectrolyteAdditive on Lithium-Ion Batteries performance[J]. Journal of Industrial andEngineering Chemistry, 2017, 53: 241-246.
[62] ZHANG J, WANG P F, BAI P, et al. Interfacial Design for 4.6 V High-Voltage Single-Crystalline LiCoO 2 Cathode[J]. Advanced Materials, 2021: 2108353.
[63] 刘智, 董甜甜, 张焕瑞, 等. 锂离子电池高电压正极粘结剂的研究进展[J]. 高分子学报, 2021, 52(3): 18.
[64] MA Y, CHEN K, MA J, et al. A Biomass Based Free Radical Scavenger BinderEndowing a Compatible Cathode Interface for 5 V Lithium-Ion batteries[J]. Energy &Environmental Science, 2019, 12(1): 273-280.
[65] LI G, LING M, YE Y, et al. Acacia Senegal-Inspired Bifunctional Binder forLongevity of Lithium-Sulfur Batteries[J]. Advanced Energy Materials,2015, 5(21):1500878.
[66] ZOU F, MANTHIRAM A. A Review of the Design of Advanced Binders for High-Performance Batteries[J]. Advanced Energy Materials, 2020, 10(45): 2002508.
[67] DONG T, ZHANG H, MA Y, et al. A Well-Designed Water-Soluble BinderEnlightening the 5 V-Class LiNi 0.5 Mn 1.5 O 4 Cathodes[J]. Journal of MaterialsChemistry A, 2019, 7(42): 24594-24601.
[68] YANG J, LI P, ZHONG F, et al. Suppressing Voltage Fading of Li-Rich Oxide Cathodevia Building a Well-Protected and Partially-Protonated Surface by Polyacrylic AcidBinder for Cycle-Stable Li-Ion Batteries[J]. Advanced Energy Materials, 2020, 10(15):1904264.
[69] CHANG B, KIM J, CHO Y, et al. Highly Elastic Binder for Improved Cyclability ofNickel-Rich Layered Cathode Materials in Lithium-Ion Batteries[J]. Advanced Energy参考文献65Materials, 2020, 10(29): 2001069.
[70] LIANG J, CHEN D, ADAIR K, et al. Insight into Prolonged Cycling Life of 4 V All-Solid-State Polymer Batteries by a High-Voltage Stable Binder[J]. Advanced EnergyMaterials, 2020, 11(1): 2002455.
[71] KIM N Y, MOON J, RYOU M H, et al. Amphiphilic Bottlebrush Polymeric Bindersfor High-Mass-Loading Cathodes in Lithium-Ion Batteries[J]. Advanced EnergyMaterials, 2021, 12(1): 2102109.
[72] HITOMI S, KUBOTA K, HORIBA T, et al. Application of Acrylic-Rubber-BasedLatex Binder to High-Voltage Spinel Electrodes of Lithium-Ion Batteries[J].ChemElectroChem, 2019, 6(19): 5070-5079.
[73] MATSUDA Y, KUWATA N, OKAWA T, et al. In Situ Raman Spectroscopy of LiCoO 2Cathode in Li/Li 3 PO 4 /LiCoO 2 All-Solid-State Thin-Film Lithium Battery[J]. SolidState Ionics, 2019, 335: 7-14.
[74] NISHI T, NAKAI H, KITA A. Visualization of the State-of-Charge Distribution in aLiCoO 2 Cathode by In Situ Raman Imaging[J]. Journal of The Electrochemical Society,2013, 160(10): A1785-A1788.
[75] YOON M, DONG Y, YOO Y, et al. Unveiling Nickel Chemistry in Stabilizing High-Voltage Cobalt-Rich Cathodes for Lithium-Ion Batteries[J]. Advanced FunctionalMaterials, 2019, 30 (6): 1907903.
[76] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A Major Constituent of BrownAlgae for Use in High-Capacity Li-Ion Batteries[J]. Science, 2011, 334(6052): 75-79.
[77] ZHANG S, DENG Y, WU Q, et al. Sodium-Alginate-Based Binders for Lithium-RichCathode Materials in Lithium-Ion Batteries to Suppress Voltage and CapacityFading[J]. ChemElectroChem, 2018, 5 (9): 1321-1329.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TM912.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335686
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
黄贺. 功能化粘结剂稳定 4.6 V 高电压钴酸锂正极材料的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930237-黄贺-材料科学与工程系(5556KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄贺]的文章
百度学术
百度学术中相似的文章
[黄贺]的文章
必应学术
必应学术中相似的文章
[黄贺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。