[1] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[2] Bay H, Tuytelaars T, Gool L V. Surf: Speeded up robust features[C]//European conference on computer vision. Springer, Berlin, Heidelberg, 2006: 404-417.
[3] Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or SURF[C]//2011 International conference on computer vision. Ieee, 2011: 2564-2571.
[4] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//2007 6th IEEE and ACM international symposium on mixed and augmented reality. IEEE, 2007: 225-234.
[5] Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.
[6] Campos C, Elvira R, Rodríguez J J G, et al. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890.
[7] Engel J, Sturm J, Cremers D. Semi-dense visual odometry for a monocular camera[C]//Proceedings of the IEEE international conference on computer vision. 2013: 1449-1456.
[8] Newcombe R A, Lovegrove S J, Davison A J. DTAM: Dense tracking and mapping in real-time[C]//2011 international conference on computer vision. IEEE, 2011: 2320-2327.
[9] Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014: 15-22.
[10] Roberts R, Nguyen H, Krishnamurthi N, et al. Memory-based learning for visual odometry[C]//2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 47-52.
[11] Ciarfuglia T A, Costante G, Valigi P, et al. Evaluation of non-geometric methods for visual odometry[J]. Robotics and Autonomous Systems, 2014, 62(12): 1717-1730.
[12] Konda K R, Memisevic R. Learning visual odometry with a convolutional network[C]//VISAPP (1). 2015: 486-490.
[13] Costante G, Mancini M, Valigi P, et al. Exploring representation learning with cnns for frame-to-frame ego-motion estimation[J]. IEEE robotics and automation letters, 2015, 1(1): 18-25.
[14] Muller P, Savakis A. Flowdometry: An optical flow and deep learning based approach to visual odometry[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017: 624-631.
[15] Wang S, Clark R, Wen H, et al. Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural networks[C]//2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017: 2043-2050.
[16] Jiao J, Jiao J, Mo Y, et al. Magicvo: End-to-end monocular visual odometry through deep bi-directional recurrent convolutional neural network[J]. arXiv preprint arXiv:1811.10964, 2018.
[17] Almalioglu Y, Saputra M R U, de Gusmao P P B, et al. Ganvo: Unsupervised deep monocular visual odometry and depth estimation with generative adversarial networks[C]//2019 International conference on robotics and automation (ICRA). IEEE, 2019: 5474-5480.
[18] Yin Z, Shi J. Geonet: Unsupervised learning of dense depth, optical flow and camera pose[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 1983-1992.
[19] Nister D, Stewenius H. Scalable recognition with a vocabulary tree[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). Ieee, 2006, 2: 2161-2168.
[20] Cummins M, Newman P. FAB-MAP: Probabilistic localization and mapping in the space of appearance[J]. The International Journal of Robotics Research, 2008, 27(6): 647-665.
[21] Hou Y, Zhang H, Zhou S. Convolutional neural network-based image representation for visual loop closure detection[C]//2015 IEEE international conference on information and automation. IEEE, 2015: 2238-2245.
[22] Gao X, Zhang T. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous robots, 2017, 41(1): 1-18.
[23] Sünderhauf N, Shirazi S, Dayoub F, et al. On the performance of convnet features for place recognition[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015: 4297-4304.
[24] Arandjelovic R, Gronat P, Torii A, et al. NetVLAD: CNN architecture for weakly supervised place recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 5297-5307.
[25] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[26] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[27] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[28] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[29] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[30] Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//International conference on machine learning. PMLR, 2019: 6105-6114.
[31] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.
[32] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[33] Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2673-2681.
[34] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
[35] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[36] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[37] Li X, Wang W, Hu X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 510-519.
[38] Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
[39] Ramachandran P, Parmar N, Vaswani A, et al. Stand-alone self-attention in vision models[J]. Advances in Neural Information Processing Systems, 2019, 32.
[40] Cheng Y, Yang Y, Chen H B, et al. S3-Net: A Fast Scene Understanding Network by Single-Shot Segmentation for Autonomous Driving[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2021, 12(5): 1-19.
[41] Zhen P, Chen H B, Cheng Y, et al. Fast Video Facial Expression Recognition by a Deeply Tensor-Compressed LSTM Neural Network for Mobile Devices[J]. ACM Transactions on Internet of Things, 2021, 2(4): 1-26.
[42] Cheng Y, Li G, Wong N, et al. Deepeye: A deeply tensor-compressed neural network for video comprehension on terminal devices[J]. ACM Transactions on Embedded Computing Systems (TECS), 2020, 19(3): 1-25.
[43] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).
[44] Yuan L, Tay F E H, Li G, et al. Revisit knowledge distillation: a teacher-free framework[J]. 2019.
[45] Wei L, Xiao A, Xie L, et al. Circumventing outliers of autoaugment with knowledge distillation[C]//European Conference on Computer Vision. Springer, Cham, 2020: 608-625.
[46] Abnar S, Dehghani M, Zuidema W. Transferring inductive biases through knowledge distillation[J]. arXiv preprint arXiv:2006.00555, 2020.
[47] Dosovitskiy A, Fischer P, Ilg E, et al. Flownet: Learning optical flow with convolutional networks[C]//Proceedings of the IEEE international conference on computer vision. 2015: 2758-2766.
[48] Sun D, Yang X, Liu M Y, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8934-8943.
[49] Ren H, Li C, Zhang X, et al. ATFVO: An Attentive Tensor-compressed LSTM Model with Optical Flow Features for Monocular Visual Odometry[C]//2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA). IEEE, 2021: 79-85.
[50] Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[51] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.
[52] Touvron H, Cord M, Douze M, et al. Training data-efficient image transformers & distillation through attention[C]//International Conference on Machine Learning. PMLR, 2021: 10347-10357.
[53] Huang H, Yu H. Tensor-Solver for Deep Neural Network[M]//Compact and Fast Machine Learning Accelerator for IoT Devices. Springer, Singapore, 2019: 63-105.
[54] Huang H, Yu H. Distributed-Solver for Networked Neural Network[M]//Compact and Fast Machine Learning Accelerator for IoT Devices. Springer, Singapore, 2019: 107-143.
[55] Huang H, Yu H. Compact and Fast Machine Learning Accelerator for IoT Devices[M]. Singapore: Springer, 2019.
[56] Mao W, Xiao Z, Xu P, et al. Energy-efficient machine learning accelerator for binary neural networks[C]//Proceedings of the 2020 on Great Lakes Symposium on VLSI. 2020: 77-82.
[57] Mao W, Li K, Cheng Q, et al. A Configurable Floating-Point Multiple-Precision Processing Element for HPC and AI Converged Computing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021.
[58] Cheng Y, Wang C, Chen H B, et al. A large-scale in-memory computing for deep neural network with trained quantization[J]. Integration, 2019, 69: 345-355.
[59] Yu H, Wang Y, Zhao J, et al. Memory device, and data processing method based on multi-layer RRAM crossbar array: U.S. Patent 10,459,724[P]. 2019-10-29.
[60] Chen Y, Li T, Zhang Q, et al. ANT-UNet: Accurate and noise-tolerant segmentation for pathology image processing[J]. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2021, 18(2): 1-17.
修改评论