中文版 | English
题名

光声亚细胞结构显微成像

姓名
姓名拼音
JI Yaoyao
学号
11930403
学位类型
硕士
学位专业
080900 电子科学与技术
学科门类/专业学位类别
08 工学
导师
奚磊
导师单位
生物医学工程系
论文答辩日期
2022-05-11
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

细胞以及亚细胞结构的功能或形态异常是疾病在微观领域的表现形式,疾病诊断时也常常需要对组织切片进行显微观察以及对血液环境中细胞进行检测。众多细胞器的尺寸通常只有几十纳米甚至几纳米,亚细胞结构观察和生物学分析的研究需求催化了许多高分辨显微成像技术的发展。新兴的生物医学影像方法——光声成像技术,在多种生物结构的功能成像中被广泛应用,它的高对比度和穿透深度等优势使其在各类肿瘤疾病的诊断中极具发展潜力。光学分辨率光声显微成像系统是光声成像技术的分支,具有高空间分辨率的特点,可作为亚细胞结构成像的关键影像方法。

本文提出一种三维高分辨光声显微成像系统,其基于二维振镜水平面光栅式扫描和物镜位移台轴向扫描实现二维和三维的光声成像。该系统通过使用数值孔径高达1.3的油浸物镜实现光斑高度聚焦,极大地提高了系统轴向分辨率,克服了超声探头带宽对光声显微成像系统轴向分辨率的限制。系统在780nm波长下的横向分辨率和轴向分辨率分别达到了0.5μm2.5μm,对亚细胞结构实现高分辨率光声显微成像。本文对黑色素瘤细胞中的黑色素小体实现了二维和三维成像,再通过特异性标记的方法实现对非洲绿猴肾上皮细胞的微管结构、线粒体结构和网格蛋白包被小窝结构的二维和三维高分辨光声显微成像。亚细胞结构特异性标记使用半导体聚合物材料作为光吸收基团,该材料在780nm波长下的光吸收特性提供光声成像对比度。

光声显微成像具有高分辨率和兼具组织内外成像对比度来源的特点。无标记和特异性标记的亚细胞结构三维高分辨光声显微成像结果证明本文系统在微纳尺度细胞器研究领域的广泛应用潜力,可以作为一项对亚细胞结构和细胞生理学研究的有效工具。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表


[1] 何灵江,原丽红.人类溶酶体与溶酶体疾病[J].生物学教学,2010,35(04):2-5.
[2] 叶盛楠.北京协和医院儿科成功绘制我国溶酶体疾病谱[J].协和医学杂志,2014,5(02):178.
[3] 李军强,王天成.线粒体脑肌病的研究进展[J].癫痫杂志,2021,7(05):440-444.
[4] PORPORATO P E, PAYEN V L, PéREZ-ESCUREDO J, et al. A mitochondrial switch promotes tumor metastasis[J]. Cell Reports, 2014, 8(3):2211-1247.
[5] 董新文.阿尔茨海默病神经元的细胞骨架[J].中国神经科学杂志,2001,(03):273-275.
[6] 黄淑贞,王广基,谢媛.细胞器互作分子机制及其在疾病发生发展中的作用[J].中国药科大学学报,2019,50(04):389-396.
[7] 王潇,涂世杰,刘鑫,等.三维超分辨显微成像技术的研究进展及展望[J].激光与光电子学进展,2021,58(22):9-34.
[8] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880, s3-20(118).
[9] DEWEY C F JR. KAMM R D. HACKETT C E. Acoustic amplifier for detection of atmospheric pollutants[J]. Applied Physics Letters, 1973, 23(11).
[10] 连海根,贾子福,张郁麟,等.用于石油井深探测仪的压电陶瓷传声器[J].压电与声光,1983,01:26-30.
[11] 陈传文,明长江,刘耀田,等.激光光声装置的建立及其对某些气体的分析[J].激光,1979,10:38-41.
[12] ROSENCWAIG A. Photoacoustic spectroscopy of biological materials[J]. Science, 1973, 181(4100):657-658.
[13] WANG L V. Tutorial on photoacoustic microscopy and computed tomography[J]. IEEE journal of selected topics in quantum electronics: A Publication of the IEEE Lasers and Electro-optics Society, 2008, 14(1):171-179.
[14] JIN-WOO K, GALANZHA E I, SHASHKOV E V, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nature Nanotechnology, 2009, 4(10):688-694.
[15] WILSON K E, WANG T Y, WILLMANN J K. Acoustic and photoacoustic molecular imaging of cancer[J]. The Journal of Nuclear Medicine, 2013, 54(11):1851-1854.
[16] EVA H, ADRIAN T, NICOLAS B, et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography[J]. Radiology, 2012, 263(2):461-468.
[17] JAN L, PETER J, EDWARD Z, et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy[J]. Journal of Biomedical Optics, 2012, 17(5):056016.
[18] IN-CHEOL S, CHEOL-HEE A, KWANGMEYUNG K, et al. Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents[J]. Journal of Biomedical Optics, 2019, 24(12):121903.
[19] JAN L, EDWARD Z, GENNADIJ R, et al. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner[J]. Applied Optics, 2009, 48(10):D299-306.
[20] BURTON N C, PATEL M, MORSCHER S, et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization[J]. NeuroImage, 2013, 65(1):522-528.
[21] YAO J, XIA J, MASLOV K I, et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo[J]. NeuroImage, 2013, 64(1):257-266.
[22] MOHAMMADREZA N, JUN X, HANLIN W, et al. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1):21-26
[23] WU Z, LI L, YANG Y, et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo[J]. Science Robotics, 2019, 4(32).
[24] MASLOV K, STOICA G, WANG L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.
[25] KONSTANTIN M, F Z H, SONG H, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9):929-931.
[26] PAUL B. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4), 602-603.
[27] YAO J J, WANG L D, JOON-MO Y, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 2015, 12(5):407-410.
[28] MAO Y, HAN L, YIN Z. Cell mitosis event analysis in phase contrast microscopy images using deep learning[J]. Medical Image Analysis, 2019, 57:32-43.
[29] VOIGT S P, RAVIKUMAR K, BASU B, et al. Automated image processing workflow for morphological analysis of fluorescence microscopy cell images[J]. JOM, 2021, 73(8):2356-2365.
[30] WANG Z W, LEE S H, G.ELKINS J, et al. Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy[J]. Journal of Environmental Sciences, 2013, 25(05): 849-856.
[31] CARLOS R D L, RAHUL R A, JAVIER L R, et al. Goblet cell anatomy visualization by scanning electron microscopy[J]. Indian Journal of Ophthalmology - Case Reports, 2021, 1(2):161.
[32] CARLOS R, JOSEP T, JORGE P. Corneal epithelial cells division assessed by scanning electron microscopy[J]. Indian Journal of Ophthalmology, 2020, 68(10):2252.
[33] ZHANG C, MASLOV K, WANG L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 2010, 35(19):3195-3197.
[34] SHI J H, WONG W T T, HE Y, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 2019, 13(9):609-615.
[35] YAO D K, KONSTANTIN M, K S K, et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA[J]. Optics Letters, 2010, 35(24):4139-4141.
[36] LIU F, JIN T, YAN R P, et al. An opto-acousto-fluidic microscopic system with a high spatiotemporal resolution for microfluidic applications[J]. Optics Express, 2019, 27(2):1425-1432.
[37] JIN T, ZHANG C, LIU F, et al. On-Chip Multicolor Photoacoustic Imaging Flow Cytometry[J]. Analytical Chemistry, 2021,93(23):8134-8142.
[38] SONG C, JIN T, YAN R, et al. Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels[J]. Lab on a Chip, 2018, 18(9): 1292-1297.
[39] SUN AH, LI TT, JIN T, et al. Acoustic standing wave aided multiparametric photoacoustic imaging flow cytometry[J]. Analytical Chemistry, 2021, 93(44): 14820-14827.
[40] WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075):1458-1462.
[41] WANG Y, HU S, MASLOV K, et al. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure[J]. Optics Letters, 2011, 36(7): 1029-1031.
[42] FAVAZZA C, WANG L, JASSIM O, et al. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus[J]. Journal of Biomedical Optics, 2011, 16(1): 016015.
[43] HU S, MASLOV K, WANG L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7): 1134-1136.
[44] WICKRAMASINGHE H K, BRAY R C, JIPSON V, et al. Photoacoustics on a microscopic scale[J]. Applied Physics Letters, 1978, 33(11).
[45] YAO DK, CHEN RM, MASLOV K, et al. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei[J]. Journal of Biomedical Optics, 2012, 17(5):056004.
[46] ZHANG C, ZHANG Y S, YAO D K, et al. Label-free photoacoustic microscopy of cytochromes[J]. Journal of Biomedical Optics, 2013, 18(2):20504.
[47] ZHAROV V P. Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit[J]. Nature Photonics, 2011, 5(2):110-116.
[48] TAN ZL, TANG ZL, WU YB, et al. Multimodal subcellular imaging with microcavity photoacoustic transducer[J]. Optics Express, 2011, 19(3):2426-2431.
[49] TAN ZL, YANFEI L, WU Y B, et al. Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique[J]. Optics Express, 2012, 20(5):5802-5808.
[50] STROHM E M, BERNDL E S L, KOLIOS M C. High frequency label-free photoacoustic microscopy of single cells[J]. Photoacoustics, 2013, 1(3-4):49-53.
[51] YANG SH, YE F, XING D. Intracellular label-free gold nanorods imaging with photoacoustic microscopy[J]. Optics Express, 2012, 20(9):10370-10375.
[52] ZHANG YS, YAO J, ZHANG C, et al. Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples[J]. Angewandte Chemie, 2014, 126(31):8099-8103.
[53] ZHANG Y, CAI X, WANG Y, et al. Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye[J]. Angewandte Chemie (International ed in English), 2011, 50(32):7359-7363.
[54] SHELTON RL, MATTISON SP, APPLEGATE BE. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy[J]. Journal of Biophotonics, 2014, 7(10):830-840.
[55] AMOS D, KONSTANTIN M, ALEJANDRO G-U, et al. Label-free photoacoustic nanoscopy[J]. Journal of Biomedical Optics, 2014, 19(8):86006.
[56] DONG BQ, LI H, ZHANG Z, et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection[J]. Optica, 2015, 2(2):169-176.
[57] MATTISON S P, APPLEGATE B E. Simplified method for ultra high-resolution photoacoustic microscopy via transient absorption[J]. Optics Letters, 2014, 39(15): 4474-4477.
[58] LIU XW, WONG TTW, SHI J, et al. Label-free cell nuclear imaging by Grüneisen relaxation photoacoustic microscopy[J]. Optics Letters, 2018, 43(4):947-950.
[59] PLEITEZ M A, KHAN A A, ALICE S, et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells[J]. Nature Biotechnology, 2020, 38(3):293-296.
[60] TATIANA L. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes[J]. Applied Optics, 2019, 58(13):3597-3603.
[61] CHEN DD, YUAN Y, YU JB, et al. Purification of semiconducting polymer dots by size exclusion chromatography prior to cytotoxicity assay and stem cell labeling[J]. Analytical Chemistry, 2018, 90(9):5569-5575.
[62] CHEN XZ, LIU ZH, LI RQ, et al. Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots[J]. ACS Nano, 2017, 11(8):8084-8091.
[63] LIU ZH, LIU J, SUN ZZ, et al. Cooperative blinking from dye ensemble activated by energy transfer for super-resolution cellular imaging[J]. Analytical Chemistry, 2019, 91(6):4179-4185.
[64] LIU J, FANG XF, LIU ZH, et al. Expansion microscopy with multifunctional polymer dots[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(25):207854.
[65] WU CF, HANSEN S J, HOU P Q, et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting[J]. Angewandte Chemie (International ed in English), 2011, 50(15):3430-3434.
[66] WU CF, SZYMANSKI C, MCNEILL J D. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles[J]. Langmuir : the ACS Journal of Surfaces and Colloids, 2006, 22(7):2956-2960.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TP391.41
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335695
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
纪瑶瑶. 光声亚细胞结构显微成像[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930403-纪瑶瑶-生物医学工程系(4433KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[纪瑶瑶]的文章
百度学术
百度学术中相似的文章
[纪瑶瑶]的文章
必应学术
必应学术中相似的文章
[纪瑶瑶]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。