中文版 | English
题名

基于光声和光学相干层析技术的多模态口腔成像研究

姓名
姓名拼音
LI Ying
学号
11930398
学位类型
硕士
学位专业
071000生物学
学科门类/专业学位类别
07 理学
导师
奚磊
导师单位
生物医学工程系
论文答辩日期
2022-05-11
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
口腔疾病具有发病率高,种类繁多等特点,我国口腔疾病发病率高达 97.6%。由于口腔功能和位置的特殊性,反复多发的口腔疾病给患者日常生 活造成严重困扰。科学技术和社会经济的发展推动医疗水平不断提升,人 们也逐渐意识到口腔健康的重要性。口腔疾病早发现、早治疗能够极大减 轻患者的痛苦,如何快速、准确地诊断早期口腔疾病成为医疗技术发展的 一大迫切需求。通过影像学结果可快速、直观、准确地判断口腔内部环境 健康状态。光声成像作为一种新兴生物医学成像方法,具有非入侵、高分
辨率、高对比度等特点,能够获得清晰的血管成像;光学相干层析成像也 是近几十年发展起来的生物医学成像技术,其根据生物组织后向散射光携 带的生物组织内部信息,可以获得生物组织高轴向分辨率的层析成像,在 临床上已有成熟应用。口腔内部发生病变时,病变处毛细血管微循环和组 织分层结构会发生变化。因此结合光声成像和光学相干层析成像两种成像 技术,可有效探测口腔疾病早期的血管微循环变化以及组织形态结构改变, 为口腔疾病早期诊断提供新的方法。而以往报道的光声-光学相干层析多模 态成像系统或受限于系统体积庞大、集成度低,或受限于时间、空间分辨 率低,均不适用于口腔疾病的早期诊断。
为突破上述限制,本文搭建了一套小型化光声-光学相干层析多模态成 像系统,利用微机电扫描振镜提高设备集成度。本文所实现的成像探头最 终体积仅 45×20×15mm3,可灵活地采集口腔内不同区域的成像结果。通过 仿体成像和动物实验验证系统光声横向分辨率可达 3.9μm,轴向分辨率为 120μm;光学相干层析成像横向分辨率为 5.7μm,轴向分辨率为 6.0μm。探 头能获得清晰的血管网络和组织结构成像,证实此成像探头对活体生物组 织成像性能良好。同时,使用该系统采集了健康志愿者口腔不同区域成像
数据,观察到不同区域血管和组织结构形态差异,验证了该系统的临床应用潜力。
其他摘要
Oral diseases have the characteristics of high incidence, and great variety.
The morbidity of oral disease in China is as high as 97.6%. Due to the
particularity of oral function and location, repeated oral diseases cause serious distress to patients’ daily life. The development of science and economy have promoted the continuous improvement of medical level, and people become aware of prevention and treatment of oral diseases gradually. Early detection and treatment of oral diseases can greatly reduce the pain of patients. How to screen early oral diseases quickly, precisely has become an urgent need for the development of oral medical technology. Through imaging results can quickly,
visually and accurately judge the health status of the internal oral cavity. As an emerging biomedical imaging method, photoacoustic imaging has the characteristics of non-invasive, high resolution, and high contrast, which can obtain clear imaging of vascular network. Optical coherence tomography is also a biomedical imaging technology developed in recent decades and has been applied in clinical practice. According to the information carried by the backscattered light of biological tissues, it can get the tomography result with high axial resolution. When disease occurs in the oral cavity, the capillary microcirculation and tissue stratification structure at the lesions will change.
Therefore, the combination of photoacoustic imaging and optical coherence tomography can effectively detect the changes of vascular microcirculation and tissue morphological structure in the early stage of oral diseases. It will provide a new method for the early diagnosis of oral diseases. However, the previously reported photoacoustic-optical coherence tomography multi-modal systems are not suitable for the early diagnosis of oral diseases due to the bulky system volume, low integration, temporal and spatial resolution.
In order to break through the limitations mentioned above, a hand-held
miniaturized multi-modal system of photoacoustic and optical coherence tomography is proposed and implemented in this thesis. Using micro-electro- mechanical scanning mirror make the imaging probe more integrated. The volume of the imaging probe in this thesis is only 45×20×15mm3, which can flexibly collect the imaging results of various areas in the oral cavity. Through the phantom and animal experiments, it verifyied the photoacoustic lateral resolution can reach 3.9μm and the axial resolution is 120μm; The lateral resolution of optical coherence tomography is 5.7μm, and the axial resolution is 6.0μm. It can obtain clear capillary network and tissue layered structure images of mice, which confirmed the system has good imaging ability for in vivo biological tissue. Meanwhile, we used this multi-modality system to collect the imaging results of the different oral areas of a healthy volunteer, and observed the differences in the structure and morphology of blood vessels and tissues in different regions. It verified the potential of clinical application of the system.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 健康报网.中国居民口腔疾病发病率依然很高[J].中国口腔医学信息,2010(5):96-96.
[2] TAFERE Y, CHANIE S, DESSIE T, et al. Assessment of prevalence of dental caries and the associated factors among patients attending dental clinic in Debre Tabor general hospital: a hospital-based cross-sectional study[J]. BMC Oral Health, 2018, 18:119.
[3] World Health Organization. Oral Health fact sheet April 2012. https://www.mah.se/CAPP/Oral-Health-Promotion/WHO-Oral-Health-Fact-Sheet1/
[4] SELWITZ RH, ISMAIL AI, PITTS NB. Dental caries[J]. Lancet, 2007, 369(9555):51-59.
[5] JIN LJ, LAMSTER IB, GREENSPAN JS, et al. Global burden of oral diseases: emerging concepts, management and interplay with systemic health[J]. Oral Diseases, 2016, 22(7):609-619.
[6] KINANE DF, STATHOPOULOU PG, PAPAPANOU PN. Periodontal diseases[J]. Nature Reviews Disease Primers, 2017, 3:17038.
[7] GOTSMAN I, LOTAN C, SOSKOLNE WA, et al. Periodontal destruction is associated with coronary artery disease and periodontal infection with acute coronary syndrome[J]. Journal of Periodontology, 2007, 78(5):849-858.
[8] JEFFCOAT MK, HAUTH JC, GEURS NC, et al. Periodontal disease and preterm birth: results of a pilot intervention study[J]. Journal of Periodontology, 2003, 74(8):1214-1218.
[9] KHADER YS, DAUOD AS, EL-QADERI SS, et al. Periodontal status of diabetics compared with nondiabetics: a meta-analysis[J]. Journal of Diabetes Complications, 2006, 20(1):59-68.
[10] GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053):1545-1602.
[11] SHAH JP, GIL Z. Current concepts in management of oral cancer-surgery[J]. Oral Oncology, 2009, 45(4-5):394-401.
[12] GOLDSTEIN BY, CHANG SC, HASHIBE M, et al. Alcohol consumption and cancers of the oral cavity and pharynx from 1988 to 2009: an update[J]. European Journal of Cancer Prevention, 2010, 19 (6):431-65.
[13] LIPPMAN SM, HONG WK. Molecular markers of the risk of oral cancer[J]. New England Journal of Medicine, 2001, 344(17):1270-1278.
[14] SIEGEL RL, MILLER KD, FEDEWA SA, et al. Colorectal cancer statistics 2017[J]. CA: a cancer journal for clinicians, 2017, 67(3):177-193.
[15] JOSHIPURA KJ, RIMM EB, DOUGLASS CW, et al. Poor oral health and coronary heart disease[J]. Journal of Dental Research, 1996, 75(9):1631-1636.
[16] MATHEWS MJ, MATHEWS EH, MATHEWS GE. Oral health and coronary heart disease[J]. BMC Oral Health, 2016, 16(1):122.
[17] WILSON K, LIU Z, HUANG J, et al. Poor oral health and risk of incident myocardial infarction: A prospective cohort study of Swedish adults, 1973-2012[J]. Scientific Reports, 2018, 8:11479.
[18] KIM K, CHOI S, CHANG J, et al. Severity of dental caries and risk of coronary heart disease in middle-aged men and women: a population-based cohort study of Korean adults, 2002-2013[J]. Scientific Reports, 2019, 9:10491.
[19] MONROE M, KAKARALA K. Management of Advanced Basal Cell Carcinoma of the Head and Neck[J]. Current Oncology Reports, 2021, 23:129.
[20] LIPPMAN SM, HONG WK. Molecular markers of the risk of oral cancer[J]. New England Journal of Medicine, 2001, 344(17):1270-1278.
[21] 郑可国.医学影像学(第四版)[M].北京:人民卫生出版社, 2019, 1-2.
[22] 高剑波.实用数字 X 线体层影像诊断学[M].北京:人民卫生出版社, 2017, 9-10.
[23] 陈倩,孙兴怀.超声生物显微镜[M].上海:复旦大学出版社, 2015, 11-12.
[24] 张建英,谢文明,曾志平,等.光声成像技术的最新进展[J].中国光学, 2011, 4(2):112-113.
[25] NARAYANAN S, ANAND S, PRASANNA R, et al. Bimodal multispectral imaging system with cloud-based machine learning algorithm for real-time screening and detection of oral potentially malignant lesions and biopsy guidance[J]. Journal Biomedical Optics, 2021, 26(8):086003.
[26] FARAH CS. Narrow Band Imaging-guided resection of oral cavity cancer decreases local recurrence and increases survival[J]. Oral Diseases, 2018, 24:89-97.
[27] HALICEK M, DORMER JD, LITTLE JV, et al. Hyperspectral Imaging of Head and Neck Squamous Cell Carcinoma for Cancer Margin Detection in Surgical Specimens from 102 Patients Using Deep Learning[J]. Cancers, 2019, 11(9):1367.
[28] INOUE H, KAGA M, IKEDA H, et al. Magnification endoscopy in esophageal squamous cell carcinoma: a review of the intrapapillary capillary loop classification[J]. Annals of Gastroenterology, 2015, 28(1):41-48.
[29] TAKANO JH, YAKUSHIJI T, KAMIYAMA I, et al. Detecting early oral cancer: narrowband imaging system observation of the oral mucosa microvasculature[J]. International Journal of Oral and Maxillofacial Surgery, 2010, 39(3):208-213.
[30] DECORO M, WILDER-SMITH P. Potential of optical coherence tomography for early diagnosis of oral malignancies[J]. Expert Review of Anticancer Therapy, 2010, 10(3):321-329.
[31] STASIO DD, LAURITANO D, LOFFREDO F, et al. Optical coherence tomography imaging of oral mucosa bullous diseases: a preliminary study[J]. Dentomaxillofacial Radiology, 2020, 49(2):20190071.
[32] WANG LV, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075):1458-1462.
[33] WANG LV. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3:503-509.
[34] SANDELL JL, ZHU TC. A review of in-vivo optical properties of human tissues and its impact on PDT[J]. Journal of Biophotonics, 2011, 4(11-12):773-87.
[35] SPLINTER R, HOOPER B A. An Introduction to Biomedical Optics[M]. NY, London: CRC Press, 2007.
[36] HU S, MASLOV K, WANG LV. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7):1134- 1136.
[37] ZHANG C, MASLOV K, WANG LV. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 2010, 35(19):3195-3197.
[38] WONG TTW, ZHANG R, HAI P, et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy[J]. Science Advances, 2017, 3(5):e1602168.
[39] ZHANG HF, MASLOV K, STOICA G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature biotechnology, 2006, 24(7):848-851.
[40] HU S, MASLOV K, WANG LV. In vivo functional chronic imaging of a small animal model using optical‐resolution photoacoustic microscopy[J]. Medical physics, 2009, 36(6):2320-2323.
[41] XIE Z, JIAO S, ZHANG HF, et al. Laser-scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 2009, 34(12):1771-1773.
[42] KIM C, FAVAZZA C, WANG LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths[J]. Chemical reviews, 2010, 110(5):2756-2782.
[43] SCHMITT JM. Optical coherence tomography (OCT): a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4):1205-1215.
[44] SPAIDE RF, FUJIMOTO JG, WAHEED NK, et al. Optical coherence tomography angiography[J]. Progress in Retinal and Eye Research, 2018, 64:1-55.
[45] TSOKOLAS G, TSAOUSIS KT, DIAKONIS VF, et al. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review[J]. Eye Brain, 2020, 12:73-87.
[46] SPAIDE RF, KLANCNIK JM, COONEY MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmology, 2015, 133(1):45-50.
[47] REN H, DING Z, ZHAO Y, et al. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin[J]. Optics Letters, 2002, 27(19):1702-1704.
[48] ZHAO Y, CHE Z, SAXER C, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 2000, 25(2):114-116.
[49] LIANG K, WANG Z, AHSEN OO, et al. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo[J]. Optica, 2018, 5(1):36-43.
[50] ADLER DC, CHEN Y, HUBER R, et al. Three-dimensional endomicroscopy using optical coherence tomography[J]. Nature Photonics, 2007, 1(12):709-716.
[51] WILDER-SMITH P, JUNG WG, BRENNER M, et al. In vivo optical coherence tomography for the diagnosis of oral malignancy[J]. Lasers in Surgery and Medicine, 2004, 35(4):269-275.
[52] LI L, MASLOV K, KU G, et al. Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies[J]. Optics Express, 2009, 17:16450-16455.
[53] LI L, RAO B, MASLOV K, et al. Fast-scanning reflection-mode integrated photoacoustic and optical-coherence microscopy[C]. Photons Plus Ultrasound: Imaging & Sensing. International Society for Optics and Photonics, 2010.
[54] YANG Y, LI X, WANG T, et al. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization[J]. Biomedical Optics Express, 2011, 2(9):2551-2561.
[55] DAI X, XI L, DUAN C, et al. Miniature probe integrating optical-resolution photoacoustic microscopy, optical coherence tomography, and ultrasound imaging: proof- of-concept[J]. Optics Letters, 2015, 40(12):2921-2924.
[56] DAI X, YANG H, SHAN T, et al. Miniature endoscope for multimodal imaging[J]. Acs Photonics, 2016, 4(1):174-180.
[57] ZHANG X, ZHANG HF, JIAO S. Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source[J]. Journal of Biomedical Optics, 2012, 17(3):0305021-0305023.
[58] ZHANG EZ, POVAZAY B, LAUFER J, et, al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging[J]. Biomedical Optics Express, 2011, 2(8):2202-2215.
[59] LIU M, CHEN Z, ZABIHIAN B, et al. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging[J]. Biomedical Optics Express, 2016, 7(9):3390-3402.
[60] HAINDL R, DELORIA A. J, STURTZEL C, et al. Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae[J]. Biomedical Optics Express, 2020, 11(4):2137-2151.
[61] CHEN Z, YANG S, WANG Y, et al. Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer[J]. Applied Physics Letters, 2015, 106(4):043701.
[62] CHEN Z, YANG S, XING D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 2016, 41:1636-1639.
[63] CHANG Y, HU Y, CHEN Z, et al. Co-impulse multispectral photoacoustic microscopy and optical coherence tomography system using a single supercontinuum laser[J]. Optics Letters, 2019, 44(18),4459-4462.
[64] QIN W, QI WZ, JIN T, et al. In vivo oral imaging with integrated portable photoacoustic microscopy and optical coherence tomography[J]. Applied Physics Letters, 2017, 111(26):263704.
[65] QIN W, CHEN Q, XI L. A handheld microscope integrating photoacoustic microscopy and optical coherence tomography[J]. Biomedical Optics Express, 2018, 9(5):2205-2213.
[66] ZHU X, HUANG Z, LI Z, et al. Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system[J]. Photoacoustics, 2020, 19:100188.
[67] JACQUES S L. Optical properties of biological tissues: a review[J]. Physics in Medicine Biology, 2013, 58(11):R37-R61.
[68] TUCHIN, VV. Tissue Optics and Photonics: Light-Tissue Interaction[J]. Journal of Biomedical Photonics & Engineering, 2015, 1(2):98–135.
[69] BEARD P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4):602-631.
[70] ERIKSSON B, NOWAK R. Maximum Likelihood Methods for Time-Resolved Imaging Through Turbid Media[C]. International Conference on Image Processing, 2006, pp. 641- 644.
[71] 王凯. 谱域光学相干层析成像方法与系统研究[D]. 杭州:浙江大学, 2010.
[72] BELL AG. Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34):404-426.
[73] MANWAR R, ZAFAR M, XU Q. Signal and Image Processing in Biomedical Photoacoustic Imaging: A Review[J]. Optics, 2021, 2:1-24.
[74] 齐伟智. 应用于早期口腔癌的光学分辨率光声显微成像系统[D].成都:电子科技大 学,2018.
[75] WANG LV, GAO L. Photoacoustic microscopy and computed tomography: from bench to bedside[J]. Annual Review of Biomedical Engineering, 2014, 16:155-85.
[76] LI L, ZHU L, MA C, et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 2017, 1(5):0071.
[77] LIN L, HU P, SHI JH, et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 2018, 9:2352
[78] PARK S, LEE C, KIM J, et al. Acoustic resolution photoacoustic microscopy[J]. Biomedical Engineering Letters, 2014, 4(3):213-222.
[79] MASLOV K, ZHANG HF, HU S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9):929-931.
[80] TSYTSAREV V, HU S, YAO J, et al. Photoacoustic microscopy of microvascular responses to cortical electrical stimulation[J]. Journal of Biomedical Optics, 2011, 16(7):076002.
[81] WANG L, MASLOV K, YAO J, et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 2011, 36(2):139-141.
[82] FERCHER AF, MENGEDOHT K, WERNER W. Eye-length measurement by interferometry with partially coherent light[J]. Optics Letters, 1988, 13(3):186-188.
[83] HUANG D, SWANSON EA, LIN CP, et al. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181.
[84] 肖青. 高分辨实时光学相干层析成像系统的研究[D]. 武汉:华中科技大学, 2011.
[85] 李谦. 光声与 OCT 的血管-神经功能成像技术及其在视觉系统中的应用[D].上海交通 大学,2018.
[86] TAN B, HOSSEINAEE Z, HAN L, et al. 250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea[J]. Biomedical Optics Express, 2018, 9:6569-6583.
[87] LARA-CASTRO M, HERRERA-AMAYA A, ESCAROLA-ROSAS MA, et al. Design and modeling of polysilicon electrothermal actuators for a mems mirror with low power consumption[J]. Micromachines, 2017, 8(7):203.
[88] 王瑄,李中梁,南楠,等.一种基于固定光程差干涉信号的光学相干层析成像光谱标定方 法[J]. 中国激光, 2018, 45(6):225-230.
[89] 孟鑫,刘磊,江升,等.基于小波变换的干涉光谱信号检测与校正方法[J]. 光学学报, 2019, (9):403-410.
[90] 童俊海,钟舜聪,张秋坤,等.基于干涉条纹的光谱仪光谱标定方法研究[J]. 机电工程, 2017, (08):856-859.

所在学位评定分委会
生物系
国内图书分类号
TP391.41
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335697
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
李颖. 基于光声和光学相干层析技术的多模态口腔成像研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930398-李颖-生物医学工程系.(3170KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李颖]的文章
百度学术
百度学术中相似的文章
[李颖]的文章
必应学术
必应学术中相似的文章
[李颖]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。