中文版 | English
题名

基于墨水直写的软材料3D打印及其应用

其他题名
DIRECT-INK-WRITE 3D PRINTING OF SOFT MATERIALS AND ITS APPLICATIONS
姓名
姓名拼音
LI Xiaotian
学号
11930334
学位类型
硕士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
杨灿辉
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-17
论文提交日期
2022-06-12
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

软材料具有激励小、变形大的特点,在日常生活和工程领域中均具有广泛的应用。3D打印技术的发展为软材料提供了智能制造的平台。墨水直写打印是软材料打印中最为常见的一种,具有结构简单、成本低廉、适用性强等优点,被广泛应用于打印各种功能性软材料。墨水直写打印要求墨水材料具有较高的粘度(10-1-103 Pa·s),同时具有剪切变稀特性。但是,大多数软材料的前驱液不能同时满足这两种性质。尽管可以通过调节化学组分优化墨水材料的流变性能,从而提高可打印性,但优化过程往往牺牲了材料在力学、光学和生物相容性等方面的性能。因此,传统的墨水直写打印技术在很大程度上限制了材料的选择范围。

针对上述问题,本课题发展了一种与稀溶液兼容的打印技术,通过等离子体处理技术与墨水直写技术的集成,在不改变材料组分的前提下,实现了基于墨水直写的等离子体辅助软材料3D打印。在硬件方面,对相关零部件进行选型、建模、制造和装配,设计并搭建了能够同时完成墨水直写打印和等离子体处理的打印平台。在材料方面,开发了适用于该墨水直写打印技术的材料,并通过参数优化得到了最佳打印精度;对该打印技术墨水材料在基板表面铺开的力学机理进行了分析,并进一步探究了该技术对墨水材料和基板类型的普适性,测试了不同类型材料在不同类型基板表面的粘接能。在应用方面,探究了墨水直写3D打印的水凝胶作为离子导体的电学性能,设计并制备了离子导体驱动的柔性薄膜电致发光器件和适用于软体驱动器的柔性大变形应变传感器。

本文提出的基于墨水直写的等离子体辅助软材料3D打印技术,解决了目前普遍存在的墨水直写打印技术与低粘度墨水材料不兼容的问题,将可打印墨水的最低粘度降低了两个数量级(10-3 Pa·s),极大地拓宽了墨水材料的选择范围,为墨水直写3D打印技术提供了新的解决方案。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

 


[1] Beaman J J, Bourell D L, Seepersad C C, et al. Additive Manufacturing Review: Early Past to Current Practice[J]. Journal of Manufacturing Science and Engineering, 2020, 142(11).

[2] Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges[J]. Journal of Cleaner Production, 2016, 137: 1573-1587.

[3] Chen R K, Jin Y, Wensman J, et al. Additive manufacturing of custom orthoses and prostheses—A review[J]. Additive Manufacturing, 2016, 12: 77-89.

[4] Calignano F, Manfredi D, Ambrosio E P, et al. Overview on Additive Manufacturing Technologies[J]. Proceedings of the IEEE, 2017, 105(4): 593-612.

[5] A. Lifton V, Lifton G, Simon S. Options for additive rapid prototyping methods (3D printing) in MEMS technology[J]. Rapid Prototyping Journal, 2014, 20(5): 403-412.

[6] Angrish A. A critical analysis of additive manufacturing technologies for aerospace applications[C]//2014 IEEE Aerospace Conference.

[7] Fu K, Yao Y, Dai J, et al. Progress in 3D Printing of Carbon Materials for Energy-Related Applications[J]. Advanced Materials, 2017, 29(9): 1603486.

[8] Le Duigou A, Castro M, Bevan R, et al. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality[J]. Materials & Design, 2016, 96: 106-114.

[9] Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures, 2016, 49(4): 1213-1220.

[10] Guo N, Leu M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243.

[11] Liu J, Gaynor A T, Chen S, et al. Current and future trends in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2457-2483.

[12] Gul J Z, Sajid M, Rehman M M, et al. 3D printing for soft robotics – a review[J]. Science and Technology of Advanced Materials, 2018, 19(1): 243-262.

[13] Trimmer B, Lewis J A, Shepherd R F, et al. 3D Printing Soft Materials: What Is Possible?[J]. Soft Robotics, 2015, 2(1): 3-6.

[14] Yap H K, Ng H Y, Yeow C-H. High-Force Soft Printable Pneumatics for Soft Robotic Applications[J]. Soft Robotics, 2016, 3(3): 144-158.

[15] Shen H. Beyond Terminator: squishy “octobot” heralds new era of soft robotics[J]. Nature, 2016.

[16] Kim S H, Kim D Y, Lim T H, et al. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting[M]. Chun H J, Reis R L, Motta A, et al., eds.//Bioinspired Biomaterials: Advances in Tissue Engineering and Regenerative Medicine. Singapore: Springer, 2020: 53-66.

[17] MacCurdy R, Katzschmann R, Kim Y, et al. Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids[C]//2016 IEEE International Conference on Robotics and Automation (ICRA).

[18] Chan V, Park K, Collens M B, et al. Development of Miniaturized Walking Biological Machines[J]. Scientific Reports, 2012, 2(1): 857.

[19] Gafford J, Ding Y, Harris A, et al. Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper[J]. Journal of Mechanisms and Robotics, 2015, 7(2).

[20] Wickramasinghe S, Do T, Tran P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments[J]. Polymers, 2020, 12(7): 1529.

[21] Mazzanti V, Malagutti L, Mollica F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties[J]. Polymers, 2019, 11(7): 1094.

[22] Wang J, Yang B, Lin X, et al. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method[J]. Polymers, 2020, 12(11): 2492.

[23] Khondoker M A H, Sameoto D. Direct coupling of fixed screw extruders using flexible heated hoses for FDM printing of extremely soft thermoplastic elastomers[J]. Progress in Additive Manufacturing, 2019, 4(3): 197-209.

[24] Ching T, Li Y, Karyappa R, et al. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing[J]. Sensors and Actuators B: Chemical, 2019, 297: 126609.

[25] Hao L, Tang D, Sun T, et al. Direct Ink Writing of Mineral Materials: A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(2): 665-685.

[26] Saadi M A. S R, Maguire A, Pottackal N, et al. Direct Ink Writing: A 3D Printing Technology for Diverse Materials[J]. Advanced Materials, [no date], n/a(n/a): 2108855.

[27] Hou Z, Lu H, Li Y, et al. Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review[J]. Frontiers in Materials, 2021, 8.

[28] Ebers L-S, Laborie M-P. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters[J]. ACS Applied Bio Materials, 2020, 3(10): 6897-6907.

[29] Lewis J A. Direct Ink Writing of 3D Functional Materials[J]. Advanced Functional Materials, 2006, 16(17): 2193-2204.

[30] Cheng Y, Chan K H, Wang X-Q, et al. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots[J]. ACS Nano, 2019, 13(11): 13176-13184.

[31] Yirmibesoglu O D, Simonsen L E, Manson R, et al. Multi-material direct ink writing of photocurable elastomeric foams[J]. Communications Materials, 2021, 2(1): 1-14.

[32] Jiang P, Ji Z, Zhang X, et al. Recent advances in direct ink writing of electronic components and functional devices[J]. Progress in Additive Manufacturing, 2018, 3(1): 65-86.

[33] Skylar-Scott M A, Mueller J, Visser C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature, 2019, 575(7782): 330-335.

[34] Ge Q, Jian B, Li H. Shaping soft materials via digital light processing-based 3D printing: A review[J]. Forces in Mechanics, 2022, 6: 100074.

[35] Ge L, Dong L, Wang D, et al. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators[J]. Sensors and Actuators A: Physical, 2018, 273: 285-292.

[36] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352.

[37] Peele B N, Wallin T J, Zhao H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography[J]. Bioinspiration & Biomimetics, 2015, 10(5): 055003.

[38] Ibrahim D, Broilo T L, Heitz C, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJetTM models in the reproduction of mandibular anatomy[J]. Journal of Cranio-Maxillofacial Surgery, 2009, 37(3): 167-173.

[39] Hughes J A E, Maiolino P, Iida F. An anthropomorphic soft skeleton hand exploiting conditional models for piano playing[J]. Science Robotics, 2018, 3(25): eaau3098.

[40] Huang J, Qin Q, Wang J. A Review of Stereolithography: Processes and Systems[J]. Processes, 2020, 8(9): 1138.

[41] Tian K, Bae J, Bakarich S E, et al. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems[J]. Advanced Materials, 2017, 29(10): 1604827.

[42] Kolesky D B, Truby R L, Gladman A S, et al. 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs[J]. Advanced Materials, 2014, 26(19): 3124-3130.

[43] 嵇萍, 刘泗岩. 桌面级塑料3D打印机的发展现状[J]. 科技资讯, 2021, 19(22): 65-68.

[44] 丁承君, 韩承都. CoreXY机构3D打印机运动控制算法研究[J]. 制造业自动化, 2019, 41(02): 81-85.

[45] 郭魏源, 李安军. 不同结构类型的熔融沉积型3D打印机对比分析[J]. 黄河科技学院学报, 2021, 23(02): 75-78.

[46] 潘盛湖, 刘云强, 胡涵, 等. 基于多喷头并联的3D打印机控制系统的研究[J]. 工程设计学报, 2022, 29(01): 100-106.

[47] 倪笑宇, 寇逸伦, 刘春东, 等. 基于Arduino的3D打印机设计开发[J]. 河北建筑工程学院学报, 2019, 37(01): 141-144.

[48] 梁晓博, 张广鹏, 王飞. 基于Arduino的小型膨化食品3D打印机开发[J]. 中国新技术新产品, 2019(05): 8-9.

[49] Trelles J P, Chazelas C, Vardelle A, et al. Arc Plasma Torch Modeling[J]. Journal of Thermal Spray Technology, 2009, 18(5): 728.

[50] 李志军, 程光旭, 韦玮. 汽车用可涂装型聚丙烯基复合材料的研制[J]. 汽车工艺与材料, 2001(01): 17-20.

[51] Habib A, Khoda B. Development of clay based novel hybrid bio-ink for 3D bio-printing process[J]. Journal of Manufacturing Processes, 2019, 38: 76-87.

[52] Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121.

[53] Wu M-H, Shih M-H, Hsu W-B, et al. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model[J]. PLOS ONE, 2017, 12(10): e0186784.

[54] Zhang S, Shi Z, Xu H, et al. Revisiting the mechanism of redox-polymerization to build the hydrogel with excellent properties using a novel initiator[J]. Soft Matter, 2016, 12(9): 2575-2582.

[55] Wang Y, Zhang S, Wang J. Photo-crosslinkable hydrogel and its biological applications[J]. Chinese Chemical Letters, 2021, 32(5): 1603-1614.

[56] Tun Han W, Jang T, Chen S, et al. Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach[J]. Biomaterials Science, 2020, 8(1): 450-461.

[57] Seethapathy S, Górecki T. Applications of polydimethylsiloxane in analytical chemistry: A review[J]. Analytica Chimica Acta, 2012, 750: 48-62.

[58] Knauth P. Ionic Conductor Composites: Theory and Materials[J]. Journal of Electroceramics, 2000, 5(2): 111-125.

[59] Court-Castagnet R, Kaps Ch, Cros C, et al. Ionic conductivity-enhancement of LiCl by homogeneous and heterogeneous dopings[J]. Solid State Ionics, 1993, 61(4): 327-334.

[60] Tsutsui T, Lee S-B, Fujita K. Charge recombination electroluminescence in organic thin-film devices without charge injection from external electrodes[J]. Applied Physics Letters, 2004, 85(12): 2382-2384.

[61] Lozykowski H J. New step impact electroluminescent devices[J]. Solid State Communications, 1988, 66(7): 755-759.

[62] Wang X, Sun J, Dong L, et al. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator[J]. Nano Energy, 2019, 58: 410-418.

[63] Allen J W. Impact processes in electroluminescence[J]. Journal of Luminescence, 1991, 48-49: 18-22.

[64] Lee C, Kim M, Kim Y J, et al. Soft robot review[J]. International Journal of Control, Automation and Systems, 2017, 15(1): 3-15.

[65] Polygerinos P, Wang Z, Overvelde J T B, et al. Modeling of Soft Fiber-Reinforced Bending Actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789.

[66] Sarig Y. Robotics of Fruit Harvesting: A State-of-the-art Review[J]. Journal of Agricultural Engineering Research, 1993, 54(4): 265-280.

[67] Best C M, Gillespie M T, Hyatt P, et al. A New Soft Robot Control Method: Using Model Predictive Control for a Pneumatically Actuated Humanoid[J]. IEEE Robotics Automation Magazine, 2016, 23(3): 75-84.

[68] Wang H, Totaro M, Beccai L. Toward Perceptive Soft Robots: Progress and Challenges[J]. Advanced Science, 2018, 5(9): 1800541.

[69] Majidi C. Soft-Matter Engineering for Soft Robotics[J]. Advanced Materials Technologies, 2019, 4(2): 1800477.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
TP29
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335698
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
李啸天. 基于墨水直写的软材料3D打印及其应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930334-李啸天-力学与航空航天(17865KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李啸天]的文章
百度学术
百度学术中相似的文章
[李啸天]的文章
必应学术
必应学术中相似的文章
[李啸天]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。