[1] Beaman J J, Bourell D L, Seepersad C C, et al. Additive Manufacturing Review: Early Past to Current Practice[J]. Journal of Manufacturing Science and Engineering, 2020, 142(11).
[2] Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges[J]. Journal of Cleaner Production, 2016, 137: 1573-1587.
[3] Chen R K, Jin Y, Wensman J, et al. Additive manufacturing of custom orthoses and prostheses—A review[J]. Additive Manufacturing, 2016, 12: 77-89.
[4] Calignano F, Manfredi D, Ambrosio E P, et al. Overview on Additive Manufacturing Technologies[J]. Proceedings of the IEEE, 2017, 105(4): 593-612.
[5] A. Lifton V, Lifton G, Simon S. Options for additive rapid prototyping methods (3D printing) in MEMS technology[J]. Rapid Prototyping Journal, 2014, 20(5): 403-412.
[6] Angrish A. A critical analysis of additive manufacturing technologies for aerospace applications[C]//2014 IEEE Aerospace Conference.
[7] Fu K, Yao Y, Dai J, et al. Progress in 3D Printing of Carbon Materials for Energy-Related Applications[J]. Advanced Materials, 2017, 29(9): 1603486.
[8] Le Duigou A, Castro M, Bevan R, et al. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality[J]. Materials & Design, 2016, 96: 106-114.
[9] Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures, 2016, 49(4): 1213-1220.
[10] Guo N, Leu M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243.
[11] Liu J, Gaynor A T, Chen S, et al. Current and future trends in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2457-2483.
[12] Gul J Z, Sajid M, Rehman M M, et al. 3D printing for soft robotics – a review[J]. Science and Technology of Advanced Materials, 2018, 19(1): 243-262.
[13] Trimmer B, Lewis J A, Shepherd R F, et al. 3D Printing Soft Materials: What Is Possible?[J]. Soft Robotics, 2015, 2(1): 3-6.
[14] Yap H K, Ng H Y, Yeow C-H. High-Force Soft Printable Pneumatics for Soft Robotic Applications[J]. Soft Robotics, 2016, 3(3): 144-158.
[15] Shen H. Beyond Terminator: squishy “octobot” heralds new era of soft robotics[J]. Nature, 2016.
[16] Kim S H, Kim D Y, Lim T H, et al. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting[M]. Chun H J, Reis R L, Motta A, et al., eds.//Bioinspired Biomaterials: Advances in Tissue Engineering and Regenerative Medicine. Singapore: Springer, 2020: 53-66.
[17] MacCurdy R, Katzschmann R, Kim Y, et al. Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids[C]//2016 IEEE International Conference on Robotics and Automation (ICRA).
[18] Chan V, Park K, Collens M B, et al. Development of Miniaturized Walking Biological Machines[J]. Scientific Reports, 2012, 2(1): 857.
[19] Gafford J, Ding Y, Harris A, et al. Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper[J]. Journal of Mechanisms and Robotics, 2015, 7(2).
[20] Wickramasinghe S, Do T, Tran P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments[J]. Polymers, 2020, 12(7): 1529.
[21] Mazzanti V, Malagutti L, Mollica F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties[J]. Polymers, 2019, 11(7): 1094.
[22] Wang J, Yang B, Lin X, et al. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method[J]. Polymers, 2020, 12(11): 2492.
[23] Khondoker M A H, Sameoto D. Direct coupling of fixed screw extruders using flexible heated hoses for FDM printing of extremely soft thermoplastic elastomers[J]. Progress in Additive Manufacturing, 2019, 4(3): 197-209.
[24] Ching T, Li Y, Karyappa R, et al. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing[J]. Sensors and Actuators B: Chemical, 2019, 297: 126609.
[25] Hao L, Tang D, Sun T, et al. Direct Ink Writing of Mineral Materials: A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(2): 665-685.
[26] Saadi M A. S R, Maguire A, Pottackal N, et al. Direct Ink Writing: A 3D Printing Technology for Diverse Materials[J]. Advanced Materials, [no date], n/a(n/a): 2108855.
[27] Hou Z, Lu H, Li Y, et al. Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review[J]. Frontiers in Materials, 2021, 8.
[28] Ebers L-S, Laborie M-P. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters[J]. ACS Applied Bio Materials, 2020, 3(10): 6897-6907.
[29] Lewis J A. Direct Ink Writing of 3D Functional Materials[J]. Advanced Functional Materials, 2006, 16(17): 2193-2204.
[30] Cheng Y, Chan K H, Wang X-Q, et al. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots[J]. ACS Nano, 2019, 13(11): 13176-13184.
[31] Yirmibesoglu O D, Simonsen L E, Manson R, et al. Multi-material direct ink writing of photocurable elastomeric foams[J]. Communications Materials, 2021, 2(1): 1-14.
[32] Jiang P, Ji Z, Zhang X, et al. Recent advances in direct ink writing of electronic components and functional devices[J]. Progress in Additive Manufacturing, 2018, 3(1): 65-86.
[33] Skylar-Scott M A, Mueller J, Visser C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature, 2019, 575(7782): 330-335.
[34] Ge Q, Jian B, Li H. Shaping soft materials via digital light processing-based 3D printing: A review[J]. Forces in Mechanics, 2022, 6: 100074.
[35] Ge L, Dong L, Wang D, et al. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators[J]. Sensors and Actuators A: Physical, 2018, 273: 285-292.
[36] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352.
[37] Peele B N, Wallin T J, Zhao H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography[J]. Bioinspiration & Biomimetics, 2015, 10(5): 055003.
[38] Ibrahim D, Broilo T L, Heitz C, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJetTM models in the reproduction of mandibular anatomy[J]. Journal of Cranio-Maxillofacial Surgery, 2009, 37(3): 167-173.
[39] Hughes J A E, Maiolino P, Iida F. An anthropomorphic soft skeleton hand exploiting conditional models for piano playing[J]. Science Robotics, 2018, 3(25): eaau3098.
[40] Huang J, Qin Q, Wang J. A Review of Stereolithography: Processes and Systems[J]. Processes, 2020, 8(9): 1138.
[41] Tian K, Bae J, Bakarich S E, et al. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems[J]. Advanced Materials, 2017, 29(10): 1604827.
[42] Kolesky D B, Truby R L, Gladman A S, et al. 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs[J]. Advanced Materials, 2014, 26(19): 3124-3130.
[43] 嵇萍, 刘泗岩. 桌面级塑料3D打印机的发展现状[J]. 科技资讯, 2021, 19(22): 65-68.
[44] 丁承君, 韩承都. CoreXY机构3D打印机运动控制算法研究[J]. 制造业自动化, 2019, 41(02): 81-85.
[45] 郭魏源, 李安军. 不同结构类型的熔融沉积型3D打印机对比分析[J]. 黄河科技学院学报, 2021, 23(02): 75-78.
[46] 潘盛湖, 刘云强, 胡涵, 等. 基于多喷头并联的3D打印机控制系统的研究[J]. 工程设计学报, 2022, 29(01): 100-106.
[47] 倪笑宇, 寇逸伦, 刘春东, 等. 基于Arduino的3D打印机设计开发[J]. 河北建筑工程学院学报, 2019, 37(01): 141-144.
[48] 梁晓博, 张广鹏, 王飞. 基于Arduino的小型膨化食品3D打印机开发[J]. 中国新技术新产品, 2019(05): 8-9.
[49] Trelles J P, Chazelas C, Vardelle A, et al. Arc Plasma Torch Modeling[J]. Journal of Thermal Spray Technology, 2009, 18(5): 728.
[50] 李志军, 程光旭, 韦玮. 汽车用可涂装型聚丙烯基复合材料的研制[J]. 汽车工艺与材料, 2001(01): 17-20.
[51] Habib A, Khoda B. Development of clay based novel hybrid bio-ink for 3D bio-printing process[J]. Journal of Manufacturing Processes, 2019, 38: 76-87.
[52] Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121.
[53] Wu M-H, Shih M-H, Hsu W-B, et al. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model[J]. PLOS ONE, 2017, 12(10): e0186784.
[54] Zhang S, Shi Z, Xu H, et al. Revisiting the mechanism of redox-polymerization to build the hydrogel with excellent properties using a novel initiator[J]. Soft Matter, 2016, 12(9): 2575-2582.
[55] Wang Y, Zhang S, Wang J. Photo-crosslinkable hydrogel and its biological applications[J]. Chinese Chemical Letters, 2021, 32(5): 1603-1614.
[56] Tun Han W, Jang T, Chen S, et al. Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach[J]. Biomaterials Science, 2020, 8(1): 450-461.
[57] Seethapathy S, Górecki T. Applications of polydimethylsiloxane in analytical chemistry: A review[J]. Analytica Chimica Acta, 2012, 750: 48-62.
[58] Knauth P. Ionic Conductor Composites: Theory and Materials[J]. Journal of Electroceramics, 2000, 5(2): 111-125.
[59] Court-Castagnet R, Kaps Ch, Cros C, et al. Ionic conductivity-enhancement of LiCl by homogeneous and heterogeneous dopings[J]. Solid State Ionics, 1993, 61(4): 327-334.
[60] Tsutsui T, Lee S-B, Fujita K. Charge recombination electroluminescence in organic thin-film devices without charge injection from external electrodes[J]. Applied Physics Letters, 2004, 85(12): 2382-2384.
[61] Lozykowski H J. New step impact electroluminescent devices[J]. Solid State Communications, 1988, 66(7): 755-759.
[62] Wang X, Sun J, Dong L, et al. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator[J]. Nano Energy, 2019, 58: 410-418.
[63] Allen J W. Impact processes in electroluminescence[J]. Journal of Luminescence, 1991, 48-49: 18-22.
[64] Lee C, Kim M, Kim Y J, et al. Soft robot review[J]. International Journal of Control, Automation and Systems, 2017, 15(1): 3-15.
[65] Polygerinos P, Wang Z, Overvelde J T B, et al. Modeling of Soft Fiber-Reinforced Bending Actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789.
[66] Sarig Y. Robotics of Fruit Harvesting: A State-of-the-art Review[J]. Journal of Agricultural Engineering Research, 1993, 54(4): 265-280.
[67] Best C M, Gillespie M T, Hyatt P, et al. A New Soft Robot Control Method: Using Model Predictive Control for a Pneumatically Actuated Humanoid[J]. IEEE Robotics Automation Magazine, 2016, 23(3): 75-84.
[68] Wang H, Totaro M, Beccai L. Toward Perceptive Soft Robots: Progress and Challenges[J]. Advanced Science, 2018, 5(9): 1800541.
[69] Majidi C. Soft-Matter Engineering for Soft Robotics[J]. Advanced Materials Technologies, 2019, 4(2): 1800477.
修改评论