中文版 | English
题名

The effect of Spartina alterniflora eradication on waterbirds and benthic organisms

其他题名
互花米草清除对于水鸟和底栖动物的影响
姓名
姓名拼音
LV Chenxue
学号
11930492
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
LUCAS GARRETT GIBSON
导师单位
环境科学与工程学院
论文答辩日期
2022-05-05
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Smooth Cordgrass (Spartina alterniflora) is a perennial rhizomatous grass introduced to the intertidal wetlands in East Asia. It has become widespread and poses a direct threat to waterbirds in many important waterbird sites. There has been an increasing number of coastal restoration projects in China to eradicate S. alterniflora and restore bare tidal flats to conserve waterbirds. However, the evidence for the assumed benefits to waterbirds and benthic organisms after such restoration effort remains limited. Zhanjiang Mangrove National Nature Reserve is an important habitat for waterbirds, but the invasion of S. alterniflora is very serious and threatens the local mangrove and tidal flat wetland ecosystems. In this study, we filled this knowledge gap by evaluating the impact of S. alterniflora eradication on waterbirds and benthic organisms at Zhanjiang Mangrove National Nature Reserve in south China. Results from time-lapse camera photography indicated that the occurrence frequency of shorebirds, waterbirds and all birds were significantly higher in bare tidal flats than S. alterniflora present areas. In contrast, only the occurrence frequency of shorebirds was significantly higher in bare tidal flats than S. alterniflora eradicated areas, indicating that waterbirds and all birds used S. alterniflora eradicated areas at a similar frequency as they do on bare tidal flats. Satellite tracking results also showed similar trends. At least nine out of 16 tracked individual shorebirds used S. alterniflora eradicated areas while avoiding S. alterniflora present areas, including Common Redshank (Tringa tetanus), Grey Plover (Pluvialis squatarola), Greater Sand Plover (Charadrius leschenaultii) and Saunders's Gull (Chroicocephalus saundersi). Nonetheless, the benthic density and biomass in deeper sediments (5–20 cm from surface) were significantly lower in S. alterniflora eradicated areas than bare tidal flats, indicating that the food resources for birds may take longer to recover. This research demonstrates that the eradication of S. alterniflora could create habitats for more waterbirds and therefore the control of the spread or eradication of S. alterniflora in areas that are important to waterbirds are critical towards the conservation of migratory waterbirds.

关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表


[1] MOONEY H A, CLELAND E E. The evolutionary impact of invasive species [J]. Proceedings of the National Academy of Sciences, 2001, 98(10): 5446-5451.
[2] KELLER R P, GEIST J, JESCHKE J M, et al. Invasive species in Europe: ecology, status, and policy [J]. Environmental Sciences Europe, 2011, 23(1): 23.
[3] XIE Y, LI ZY, GREGG W P, et al. Invasive species in China — an overview [J]. Biodiversity & Conservation, 2001, 10(8): 1317-1341.
[4] COLAUTTI R I, BARRETT S C. Rapid adaptation to climate facilitates range expansion of an invasive plant [J]. Science, 2013, 342(6156): 364-366.
[5] THYLEFORS B, MEGREL A D I, PARARAJASEGARAM R, et al. Available data on blindness (update 1994) [J]. Ophthalmic epidemiology, 1995, 2(1): 5-39.
[6] PYŠEK P, LAMBDON P, ARIANOUTSOU M, et al. Handbook of alien species in Europe [M]. DAISIE, 2009.
[7] DING JQ, WANG R, FAN ZN, et al. Distribution and infestation of water hyacinth and the control strategy in China [J]. Journal of Weed Science, 1995, 9(2): 49-51.
[8] 杨叶欣, 胡隐昌, 李小慧, 等. 福寿螺在中国的入侵历史、扩散规律和危害的调查分析 [J]. 中国农学通报, 2010, 26(05): 245-250.
[9] LI ZJ, WANG WQ, ZHANG YH. Recruitment and herbivory affect spread of invasive Spartina alterniflora in China [J]. Ecology, 2014, 95(7): 1972-1980.
[10] YUAN YD, TANG XG, LIU MY, et al. Species distribution models of the Spartina alterniflora Loisel in its origin and invasive country reveal an ecological niche shift [J]. Frontiers in Plant Science, 2021, 12: 738769.
[11] FANG XB. Reproductive biology of smooth cordgrass (Spartina alterniflora), F, 2002 [C].
[12] 徐炳生. 上海植物志 [M]. 上海科学技术文献出版社, 1998.
[13] DAEHLER C C, STRONG D R. Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California: the influence of herbivory, pollination, and establishment site [J]. American Journal of Botany, 1994, 81(3): 307-313.
[14] SMART R M. Distribution and environmental control of productivity and growth form of Spartina alterniflora (Loisel.) [M]. Dordrecht: Springer Netherlands, 1982.
[15] MOBBERLEY D G. Taxonomy and distribution of the genus Spartina [J]. Iowa State College Journal of Science, 1956, 30(4): 471-574.
[16] SOMERS G F, GRANT D M. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel and the likelihood of cross pollination [J]. American Journal of Botany, 1981, 68: 6-9.
[17] PARTRIDGE T R. Spartina in New Zealand [J]. New Zealand Journal of Botany, 1987, 25(4): 567-575.
[18] RIGGS S R. Distribution of Spartina alterniflora in Padilla Bay, Washington, in 1991 [M]. Padilla Bay National Estuarine Research Reserve, 1992.
[19] 王卿, 安树青, 马志军, 等. 入侵植物互花米草——生物学,生态学及管理 [J]. 植物分类学报, 2006, (5): 559-588.
[20] WILCOX C P, TURPIN R B. Invasive species: detection, impact and control, F, 2009 [C].
[21] 钦佩, 谢民, 仲崇信. 福建罗源湾海滩互花米草盐沼中18种金属元素的分布 [J]. 海洋科学, 1989, (06): 23-27.
[22] XU GW, ZHUO RZ. Preliminary studies of introduced Spartina alterniflora Loisel in China [J]. Journal of Nanjing University(Natural Sciences), 1985, 40: 212-225.
[23] METCALFE W S, ELLISON A M, BERTNESS M D. Survivorship and spatial development of Spartina alterniflora Loisel. (Gramineae) seedlings in a New England salt marsh [J]. Annals of Botany, 1986, 58(2): 249-258.
[24] SIMENSTAD C, THOM R. Spartina alterniflora(smooth cordgrass) as an invasive halophyte in Pacific northwest estuaries [J]. Hortus Northwest: A Pacific Northwest Native Plant Directory & Journal, 1995, 6: 9-13.
[25] GE BM, JIANG SH, LIU QN, et al. Density, but not distribution pattern of Assiminea latericea varies on tidal flats with smooth cordgrass Spartina alterniflora invasion stage [J]. Regional Studies in Marine Science, 2019, 27: 100528.
[26] LANDIN M C. Growth habits and other considerations of smooth cordgrass, Spartina alterniflora Loisel; the Spartina Workshop Record, Washington Sea Grant Program, University of Washington, Seattle, F, 1991 [C].
[27] TU CR, LI P, LI ZH, et al. Synergetic classification of coastal wetlands over the Yellow River Delta with GF-3 full-polarization SAR and Zhuhai-1 OHS hyperspectral remote sensing [J]. Remote Sensing, 2021, 13(21): 4444.
[28] SAYCE K, MUMFORD J T F. Identifying the Spartina species; the Spartina workshop record Washington Sea grant program: seattle, Washington, F, 1990 [C].
[29] Global Biodiversity Information Facility [DS]. 2005,
[30] NAIDOO G, MCKEE K L, MENDELSSOHN I A. Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae) [J]. American Journal of Botany, 1992, 79(7): 765-770.
[31] WIJTE A H B M, GALLAGHER J L. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. II. Early seedling development advantage of Spartina alterniflora over Phragmites australis (Poaceae) [J]. American Journal of Botany, 1996, 83(10): 1343-1350.
[32] 陈中义. 互花米草入侵国际重要湿地崇明东滩的生态后果 [D]. 复旦大学, 2004.
[33] BULTHUIS D A, SCOTT B A. Effects of application of glyphosate on cordgrass, Spartina alterniflora, and adjacent native salt marsh vegetation in Padilla Bay, Washington [M]. Padilla Bay National Estuarine Research Reserve, Shorelands and Coastal Zone Management Program, Washington State Department of Ecology, 1993.
[34] MENDELSSOHN I A, POSTEK M T. Elemental analysis of deposits on the roots of spartina alterniflora loisel [J]. American Journal of Botany, 1982, 69(6): 904-912.
[35] BERTNESS M D. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh [J]. Ecology, 1991, 72(1): 138-148.
[36] MENDELSSOHN I A, MCKEE K L, PATRICK W H, Jr. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia [J]. Science, 1981, 214(4519): 439-441.
[37] MENDELSSOHN I A, MCKEE K L. Spartina alterniflora die-back in Louisiana: time-course investigation of soil waterlogging effects [J]. Journal of Ecology, 1988, 76(2): 509-521.
[38] LESSMANN J M, MENDELSSOHN I A, HESTER M W, et al. Population variation in growth response to flooding of three marsh grasses [J]. Ecological Engineering, 1997, 8(1): 31-47.
[39] QIN P, JIN MD, ZHANG ZR, et al. Seed germination experiments of three ecotypes of Spartina alterniflora [J]. Journal of Nanjing University—Natural Science, 1985, 21: 237-246.
[40] BRADLEY P M, MORRIS J T. Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel [J]. Journal of Experimental Botany, 1991, 42(245): 1525-1532.
[41] HESTER M W, MENDELSSOHN I A, MCKEE K L. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints [J]. Environmental and Experimental Botany, 2001, 46(3): 277-297.
[42] CAVALIERI A J. Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment [J]. Oecologia, 1983, 57(1): 20-24.
[43] 吕芝香, 刘珍奇, 仲崇信. 互花米草幼苗在不同浓度NaCl溶液中的生长和溶质的积累 [J]. 武汉植物学研究, 1992, (02): 117-122.
[44] MORRIS J T. The nitrogen uptake kinetics of Spartina alterniflora in culture [J]. Ecology, 1980, 61(5): 1114-1121.
[45] JIANG LF. Effects of invasion of Spartina alterniflora on production processes of ecosystems in estuarine wetlands of the Yangtze River, China: a comparative study of invasive and native species [D]. Postdoctoral Thesis, Fudan University, 2006.
[46] HOWES B L, DACEY J W H, GOEHRINGER D D. Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity [J]. Journal of Ecology, 1986, 74(3): 881-898.
[47] BAUMEL A, AINOUCHE M L, LEVASSEUR J E. Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France) [J]. Molecular Ecology, 2001, 10(7): 1689-1701.
[48] TOBIAS V D, WILLIAMSON M F, NYMAN J A. A comparison of the elemental composition of leaf tissue of Spartina patens and Spartina alternifora in Louisiana’s coastal marshes [J]. Journal of Plant Nutrition, 2014, 37(8): 1327-1344.
[49] SALMON A, AINOUCHE M L, WENDEL J F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae) [J]. Molecular Ecology, 2005, 14(4): 1163-1175.
[50] BAUMEL A, AINOUCHE M L, MISSET M T, et al. Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina × neyrautii re-examined [J]. Plant Systematics and Evolution, 2003, 237(1): 87-97.
[51] GREVSTAD F S, STRONG D R, GARCIA-ROSSI D, et al. Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper prokelisia marginata: agent specificity and early results [J]. Biological Control, 2003, 27(1): 32-42.
[52] DAVIS H G, TAYLOR C M, LAMBRINOS J G, et al. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13804-13807.
[53] 邓自发, 安树青, 智颖飙, 等. 外来种互花米草入侵模式与爆发机制 [J]. 生态学报, 2006, (08): 2678-2686.
[54] 唐廷贵, 张万钧. 论中国海岸带大米草生态工程效益与"生态入侵" [J]. 中国工程科学, 2003, 005(003): 15-20.
[55] WANG AJ, WANG YP, CHEN J. Role of Spartina alterniflora on sediment dynamics of coastal salt marshes — case study from central Jiangsu and middle Fujian coasts [J]. Frontiers of Earth Science in China, 2008, 2(3): 269-275.
[56] BERTNESS M D. Ribbed mussels and Spartina alterniflora production in a New England salt marsh [J]. Ecology, 1984, 65(6): 1794-1807.
[57] SILLIMAN B R, LAYMAN C A, GEYER K, et al. Predation by the black-clawed mud crab,Panopeus herbstii, in Mid-Atlantic salt marshes: further evidence for top-down control of marsh grass production [J]. Estuaries, 2004, 27(2): 188-196.
[58] LUITING V T, CORDELL J R, OLSON A M, et al. Does exotic Spartina alterniflora change benthic invertebrate assemblages; the second international Spartina conference proceedings Washington State University cooperative extension, long beach, WA, F, 1997 [C].
[59] WU JH, FU CZ, CHEN SS, et al. Soil faunal response to land use: effect of estuarine tideland reclamation on nematode communities [J]. Applied Soil Ecology, 2002, 21(2): 131-147.
[60] CHEN HL, LIB, HU JB, et al. Benthic nematode communities in the Yangtze River estuary as influenced by Spartina alterniflora invasions [J]. Marine Ecology Progress Series, 2007, 336: 99-110.
[61] DUMBAULD B R, PEOPLES M, HOLCOMB L, et al. The potential influence of the aquatic weed Spartina alterniflora and control practices on clam resources in Willapa Bay, Washington; the second international Spartina conference, Olympia, WA, F, 1997 [C].
[62] GALLAGHER J L, REIMOLD R J, LINTHURST R A, et al. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and juncus roemerianus plant stands in a Georgia salt marsh [J]. Ecology, 1980, 61(2): 303-312.
[63] DAEHLER C C, STRONG D R. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA [J]. Biological Conservation, 1996, 78(1): 51-58.
[64] 陈潘, 张燕, 朱晓静, 等. 互花米草入侵对鸟类的生态影响 [J]. 生态学报, 2019, 39(07): 2282-2290.
[65] FOSS S. Spartina: threat to Washington's saltwater habitat [M]. Washington State Department of Agriculture, Pesticide Management Division, 1992.
[66] FOIN T C, BRENCHLEY-JACKSON J L. Simulation model evaluation of potential recovery of endangered light-footed clapper rail populations [J]. Biological conservation, 1991, 58(2): 123-148.
[67] MA Q, WU W, TANG CD, et al. Effects of habitat restoration on the diversity of bird and marcobenthos in the Chongming Dongtan wetland [J]. Journal of Nanjing Forestry University Natural Sciences Edition, 2017, 41(1): 9-14.
[68] JACKSON M V, FULLER R A, GAN XJ, et al. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China [J]. Journal of Environmental Management, 2021, 278: 111549.
[69] EVANS P R. Use of the herbicide 'Dalapon' for control of Spartina encroaching on intertidal mudflats: beneficial effects on shorebirds [J]. Colonial waterbirds, 1986, 9(2): 171.
[70] GAO Y, YAN WL, LI B, et al. The substantial influences of non-resource conditions on recovery of plants: A case study of clipped Spartina alterniflora asphyxiated by submergence [J]. Ecological Engineering, 2014, 73: 345-352.
[71] ADAMS J, VAN WYK E, RIDDIN T. First record of Spartina alterniflora in southern Africa indicates adaptive potential of this saline grass [J]. Biological Invasions, 2016, 18(8): 2153-2158.
[72] 谢宝华, 韩广轩. 外来入侵种互花米草防治研究进展 [J]. 应用生态学报, 2018, 29(10): 3464-3476.
[73] 李贺鹏, 张利权. 外来植物互花米草的物理控制实验研究 [J]. 华东师范大学学报(自然科学版), 2007, (06): 44-55.
[74] HEDGE P, KRIWOKEN L, PATTEN K. A review of Spartina management in Washington State, US [J]. Journal of Aquatic Plant Management, 2003, 41: 82-90.
[75] NARANJO E, CAMBROLLé J, LOMAS J, et al. Mechanical and chemical control of the invasive cordgrass Spartina densiflora and native plant community responses in an estuarine salt marsh [J]. Journal of Aquatic Plant Management, 2012, 50: 106-111.
[76] 谷兴华, 廖宝文, 朱宁华, 等. 遮荫对互花米草生长影响的初步研究 [J]. 中国森林病虫, 2010, 29(03): 34-36+39.
[77] 曹大正, 王银生, 张冬然, 等. 互花米草在吹填筑挡工程上的试验与应用 [J]. 中国工程科学, 2005, (07): 14-23.
[78] 谭芳林, 林贻卿, 肖华山, 等. 不同时期刈割对互花米草生长影响的研究 [J]. 湿地科学, 2010, 8(04): 379-385.
[79] REEDER T G, HACKER S D. Factors contributing to the removal of a marine grass invader (Spartina anglica) and subsequent potential for habitat restoration [J]. Estuaries, 2004, 27(2): 244-252.
[80] TANG L, GAO Y, WANG JQ, et al. Designing an effective clipping regime for controlling the invasive plant Spartina alterniflora in an estuarine salt marsh [J]. Ecological Engineering, 2009, 35(5): 874-881.
[81] 肖强, 郑海雷, 叶文景, 等. 水淹对互花米草生长及生理的影响 [J]. 生态学杂志, 2005, 24(9): 4.
[82] 袁连奇, 张利权. 调控淹水对互花米草生理影响的研究 [J]. 海洋与湖沼, 2010, 41(02): 175-179.
[83] 袁琳, 张利权, 古志钦. 入侵植物互花米草(Spartina alterniflora)叶绿素荧光对淹水胁迫的响应 [J]. 环境科学学报, 2010, 30(04): 882-889.
[84] LINDAU C W, DELAUNE R D, JUGSUJINDA A, et al. Response of Spartina alterniflora vegetation to oiling and burning of applied oil [J]. Marine Pollution Bulletin, 1999, 38(12): 1216-1220.
[85] 王智晨, 张亦默, 潘晓云, 等. 冬季火烧与收割对互花米草地上部分生长与繁殖的影响 [J]. 生物多样性, 2006, (04): 275-283.
[86] KNOTT C A, WEBSTER E, NABUKALU P. Control of smooth cordgrass (Spartina alterniflora) seedlings with four herbicides [J]. Journal of Aquatic Plant Management, 2013, 51: 132-135.
[87] RIDDIN T, VAN WYK E, ADAMS J. The rise and fall of an invasive estuarine grass [J]. South African Journal of Botany, 2016, 107: 74-79.
[88] 牛立志, 桂文君, 朱国念. 草铵膦在水中的降解特性及对水生生物的毒性 [J]. 浙江农业学报, 2010, 22(4): 6.
[89] BEHRENDT H, MATTHIES M, GILDEMEISTER H, et al. Leaching and transformation of glufosinate-ammonium and its main metabolite in a layered soil column [J]. Environmental Toxicology and Chemistry, 1990, 9(5): 541-549.
[90] 沙家骏. 国外新农药品种手册 [M]. 化学工业出版社, 1992.
[91] PATTEN K. Smooth cordgrass (Spartina alterniflora) control with imazapyr1 [J]. Weed Technology, 2009, 16: 826-832.
[92] PATTEN K. Persistence and non-target impact of imazapyr associated with smooth cordgrass control in an estuary [J]. Journal of Aquatic Plant Management, 2003, 41.
[93] 刘建, 杜文琴, 马丽娜, 等. 大米草防除剂——米草净的试验研究 [J]. 农业环境科学学报, 2005, (02): 410-411.
[94] 许珠华. 福建治理互花米草试验研究 [J]. 海洋环境科学, 2010, 29(05): 767-769.
[95] 郭乾友. 滩涂互花米草除治技术研究 [J]. 防护林科技, 2011, (02): 3-5.
[96] SIMENSTAD C A, CORDELL J R, TEAR L, et al. Use of rodeo® and X-77® spreader to control smooth cordgrass (Spartina alterniflora) in a southwestern washington estuary: 2. effects on benthic microflora and invertebrates [J]. Environmental Toxicology and Chemistry, 1996, 15(6): 969-978.
[97] KILBRIDE K M, PAVEGLIO F L. Long-term fate of glyphosate associated with repeated rodeo applications to control Smooth cordgrass (Spartina alterniflora) in Willapa Bay, Washington [J]. Archives of Environmental Contamination and Toxicology, 2001, 40(2): 179-183.
[98] SHIMETA J, SAINT L, VERSPAANDONK E R, et al. Long-term ecological consequences of herbicide treatment to control the invasive grass, Spartina anglica, in an Australian saltmarsh [J]. Estuarine, Coastal and Shelf Science, 2016, 176: 58-66.
[99] 胡宏友, 董克钻, 林光辉, 等. 防除滩涂米草入侵的根际缓释方法 [J]. 农业工程学报, 2011, 27(07): 283-287.
[100] SCHWARZLäNDER M, HINZ H L, WINSTON R L, et al. Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide [J]. BioControl, 2018, 63(3): 319-331.
[101] DAEHLER C C, STRONG D R. Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth [J]. Oecologia, 1997, 110(1): 99-108.
[102] 陈振忠. 闽南沿海滩涂互花米草生物替代治理技术研究 [J]. 安徽农学通报, 2016, 22(14): 117-119.
[103] 赵相健, 柳晓燕, 宫璐, 等. 刈割加遮荫综合治理互花米草(Spartina alterniflora) [J]. 生态学杂志, 2014, 33(10): 2714-2719.
[104] 盛强, 黄铭垚, 汤臣栋, 等. 不同互花米草治理措施对植物与大型底栖动物的影响 [J]. 水生生物学报, 2014, 38(02): 279-290.
[105] CALLAGHAN C T, NAKAGAWA S, CORNWELL W K. Global abundance estimates for 9,700 bird species [J]. Proceedings of the National Academy of Sciences, 2021, 118(21): e2023170118.
[106] 马志军. 追踪鸟类的迁徙 [J]. 科学, 2013, 65(01): 19-22.
[107] 马志军. 鸟类迁徙的研究方法和研究进展 [J]. 生物学通报, 2009, 44(3): 5.
[108] 斯幸峰, 丁平. 欧美陆地鸟类监测的历史, 现状与我国的对策 [J]. 生物多样性, 2011, 19(3): 303.
[109] BUTLER C. The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America [J]. Ibis, 2003, 145: 484-495.
[110] LINCOLN F C. The history and purposes of bird banding [J]. The Auk, 1921, 38(2): 217-228.
[111] 楚国忠, 侯韵秋. 中国鸟类环志的现状与展望 [J]. 生物学通报, 1998, (03): 13-15.
[112] FRENCH J. Tracking animals by satellite [J]. Electronics and Power, 1986, 32(5): 373-376.
[113] SEEGAR W S, CUTCHIS P N, FULLER M R, et al. Fifteen years of satellite tracking development and application to wildlife research and conservation [J]. Johns Hopkins APL Technical Digest, 1996, 17(4): 401-411.
[114] UETA M, KUROSAWA R, ALLEN D. The results of the satellite-tracking of Black-faced Spoonbills in 1998 [M]. Conservation and research of Black-faced Spoonbills and their habitats. Tokyo; Wild Bird Society of Japan. 1998: 39-42.
[115] UETA M, MCGRADY M J, NAKAGAWA H, et al. Seasonal change in habitat use in Steller's sea eagles [J]. Oryx, 2003, 37(1): 110-114.
[116] BISHOP C M, SPIVEY R J, HAWKES L A, et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations [J]. Science, 2015, 347(6219): 250-254.
[117] CHOI CY, BATTLEY P F, POTTER M A, et al. Factors affecting the distribution patterns of benthic invertebrates at a major shorebird staging site in the Yellow Sea, China [J]. Wetlands, 2014, 34(6): 1085-1096.
[118] 徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类 [J]. 遥感学报, 2021, 25(03): 737-752.
[119] LISOVSKI S, BAUER S, BRIEDIS M, et al. Light-level geolocator analyses: a user's guide [J]. Journal of Animal Ecology, 2020, 89(1): 221-236.
[120] REDFERN C P F. Pair bonds during the annual cycle of a long-distance migrant, the Arctic Tern (Sterna paradisaea) [J]. Avian Research, 2021, 12(1): 32.
[121] BEASON R, NOHARA T, WEBER P. Beware the boojum: caveats and strengths of avian radar [J]. Human-Wildlife Interactions, 2013, 7: 16-46.
[122] DRISCOLL P V, UETA M. The migration route and behaviour of Eastern Curlews Numenius madagascariensis [J]. Ibis, 2002, 144(3): 119-130.
[123] BATTLEY P F, DIETZ M W, PIERSMA T, et al. Is long‐distance bird flight equivalent to a high‐energy fast? Body composition changes in freely migrating and captive fasting Great Knots [J]. Physiological and Biochemical Zoology, 2001, 74(3): 435-449.
[124] GILL R E, TIBBITTS T L, DOUGLAS D C, et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? [J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1656): 447-457.
[125] CHOI CY, LI J, XUE WJ.China coastal waterbird census report (Jan. 2012–Dec. 2019). [R]. Hong Kong: Hong Kong Bird Watching Society, 2020.
[126] LIU J, QUE PJ, ZHANG ZW. Species diversity and suggestions for adjustment of the national protection level of waterbirds in China [J]. Wetland Science, 2019, 17(2): 123-136.
[127] FAN J, WANG XD, WU W, et al. Function of restored wetlands for waterbird conservation in the Yellow Sea coast [J]. Science of the Total Environment, 2021, 756: 144061.
[128] PENG HB, ANDERSON G U Y, CHANG Q, et al. The intertidal wetlands of southern Jiangsu Province, China – globally important for Spoon-billed Sandpipers and other threatened waterbirds, but facing multiple serious threats [J]. Bird Conservation International, 2017, 27(3): 305-322.
[129] WANG XD, KUANG F L L, TAN K, et al. Population trends, threats, and conservation recommendations for waterbirds in China [J]. Avian Research, 2018, 9(1): 14.
[130] 刘春晖, 郭祁, 贾刚. 辽河口湿地保护区黑嘴鸥繁殖栖息地调查 [J]. 福建林业科技, 2021, 48(01): 99-105.
[131] 江红星. 黑嘴鸥(Larus saundersi)的繁育力及繁殖栖息地选择研究 [D]. 中国林业科学研究院, 2000.
[132] 吕丽. 黄河三角洲湿地鸟类多样性及其生境选择 [D]. 山东农业大学, 2019.
[133] 张国钢, 王征吉, 顾晓军. 黑脸琵鹭:中国海岸“黑面天使” [J]. 森林与人类, 2020, (02): 86-99.
[134] 孙莉莉, 刘云珠, 贾亦飞, 等. 广东内伶仃岛-福田国家级自然保护区鱼塘生态恢复前、后水鸟群落多样性对比 [J]. 湿地科学, 2019, 17(06): 631-636.
[135] 谢屹, 莫沫, 温亚利. 香港米浦沼泽湿地自然保护区管理现状探析 [J]. 林业资源管理, 2007, (01): 47-50.
[136] 张攀, 谢先军, 黎清华, 等. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应 [J]. 地球科学, 2022: 1-15.
[137] XU EQ, CHEN YM. Modeling intersecting processes of wetland shrinkage and urban expansion by a time-varying methodology [J]. Sustainability, 2019, 11(18): 24.
[138] OKOYE O K, LI H, GONG Z. Retraction of invasive Spartina alterniflora and its effect on the habitat loss of endangered migratory bird species and their decline in YNNR using remote sensing technology [J]. Ecology and Evolution, 2020, 10(24): 13810-13824.
[139] 孟佩. 广东湛江红树林国家级自然保护区功能区调整与评价研究 [D]. 中南林业科技大学, 2015.
[140] WETLANDS INTERNATIONAL.The list of wetlands of international importance [R]. Ramsar, 2017.
[141] LI B, LIAO CZ, ZHANG XD, et al. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects [J]. Ecological Engineering, 2009, 35(4): 511-520.
[142] 广东湛江红树林国家级自然保护区 [Z]. 2022.
[143] 邓可, 陈清华, 江帆, 等. 湛江红树林国家级自然保护区两栖、爬行和兽类资源调查 [J]. 四川林业科技, 2018, 39(03): 55-60.
[144] 张苇, 余娜娜, 刘军. 湛江红树林保护区水鸟监测及水鸟资源现状 [J]. 湿地科学与管理, 2013, 9(01): 69-71.
[145] 麦婉华. 湛江红树林国家级自然保护区——清退违法侵占修复生态 [J]. 小康, 2018, (26): 50-53.
[146] 刘一鸣, 许方宏, 林广旋, 等. 湛江红树林保护区冬季水鸟群落及生境偏好 [J]. 新疆农业大学学报, 2015, 38(05): 376-385.
[147] MARTINEZ J, J A. China’s Spoon-billed Sandpiper highest winter count in Leizhou peninsular, Guangdong province [J]. Spoon-billed Sandpiper Task Force News Bulletin, 2016, 15: 23-27.
[148] SPOON-BILLED SANDPIPER CONSERVATION ALLIANCE. China Spoon-billed Sandpiper census 2021 [R]. 2021.
[149] 刘晶, 牛俊英, 邹业爱, 等. 上海浦东东滩鸟类栖息地生态修复区的水鸟群落变化 [J]. 长江流域资源与环境, 2015, 24(02): 219-226.
[150] CHOI CY, XIAO H, JIA MM, et al. An emerging coastal wetland management dilemma between mangrove expansion and shorebird conservation [J]. Conservation Biology, 2022.
[151] ZHANG YF, ZHANG ZK, HE HC, et al. Processes of small-scale tidal flat accretion and salt marsh changes on the plain coast of Jiangsu Province, China [J]. Acta Oceanologica Sinica, 2017, 36(4): 80-86.
[152] 湛江红树林国家级自然保护区 [J]. 环境, 2021, (10): 51.
[153] 唐以杰, 余世孝. 广东湛江红树林保护区大型底栖动物群落的空间分带 [J]. 生态学报, 2007, (05): 1703-1714.
[154] 唐以杰. 湛江红树林自然保护区湿地大型底栖动物群落生态学研究 [D]. 中山大学, 2007.
[155] 周雯慧, 朱京海, 刘合鑫, 等. 湿地鸟类调查方法概述 [J]. 野生动物学报, 2018, 39(03): 588-593.
[156] MONTALBANO F, GLANZ P W, OLINDE M W, et al. A solar-powered time-lapse camera to record wildlife activity [J]. Wildlife Society Bulletin, 1985, 13(2): 178-182.
[157] MARGALEF R. Información y diversidad específica en las comunidades de organismos [J]. Investigación Pesquera, 1956, 3: 99-106.
[158] SHANNON C E. A mathematical theory of communication [J]. The Bell system technical journal, 1948, 27(3): 379-423.
[159] JAYALAKSHMY K V, RAO KK. Aspects of the biodiversity of brackish water foraminifera [J]. Environmental Forensics, 2006, 7(4): 353-367.
[160] DENG C, ZHAO Q, SHUKLA R. Detecting hormesis using a non-parametric rank test [J]. Human & Experimental Toxicology, 2000, 19(12): 703-708.
[161] LIU WW, CHEN XC, WANG JY, et al. Does the effect of flowering time on biomass allocation across latitudes differ between invasive and native salt marsh grass Spartina alterniflora? [J]. Ecology and Evolution, 2022, 12(3): e8681.
[162] YAVUZ H, UTKU D H. Parametric and non-parametric tests for the evaluation of interlaminar fracture toughness of polymer composites [J]. Journal of Reinforced Plastics and Composites, 2021, 40(11-12): 450-462.
[163] TSAGRIS M, ALENAZI A, VERROU K M, et al. Hypothesis testing for two population means: parametric or non-parametric test? [J]. Journal of statistical computation and simulation, 2020, 90(2): 252-270.
[164] SUMNER S, KELSTRUP H, FANELLI D. Reproductive constraints, direct fitness and indirect fitness benefits explain helping behaviour in the primitively eusocial wasp, Polistes canadensis [J]. Proc Biol Sci, 2010, 277(1688): 1721-1728.
[165] WILCOXON F. Individual comparisons by ranking methods [J]. Biometrics Bulletin, 1945, 1(6): 80-83.
[166] ROSNER B, GLYNN R J, LEE M L T. The Wilcoxon Signed Rank Test for paired comparisons of clustered data [J]. Biometrics, 2006, 62(1): 185-192.
[167] R CORE TEAM. R: A language and environment for statistical computing [Z].R-FOUNDATION-FOR-STATISTICAL-COMPUTING. Vienna, Austria. 2020.
[168] WICKHAM-H. ggplot2: elegant graphics for data analysis [Z]. Springer-Verlag New York. 2016.
[169] AN SQ, GU BH, ZHOU CF, et al. Spartina invasion in China: implications for invasive species management and future research [J]. Weed Research, 2007, 47(3): 183-191.
[170] COLWELL M A, DODD S L. Waterbird communities and habitat relationships in coastal pastures of northern California [J]. Conservation Biology, 1995, 9(4): 827-834.
[171] SHEPHERD P C F, LANK D B. Marine and agricultural habitat preferences of dunlin wintering in British Columbia [J]. Journal of Wildlife Management, 2004, 68(1): 61-73.
[172] SEBASTIáN-GONZáLEZ E, SáNCHEZ-ZAPATA J A, BOTELLA F. Agricultural ponds as alternative habitat for waterbirds: spatial and temporal patterns of abundance and management strategies [J]. European Journal of Wildlife Research, 2010, 56(1): 11-20.
[173] GAN XJ, CAI YT, CHOI CY, et al. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance [J]. Estuarine, Coastal and Shelf Science, 2009, 83(2): 211-218.
[174] ZHANG J. Ecological continuum from the Changjiang (Yangtze River) watersheds to the east China sea continental margin [M]. 2015.
[175] SRIPANOMYOM S, ROUND P D, SAVINI T, et al. Traditional salt-pans hold major concentrations of overwintering shorebirds in Southeast Asia [J]. Biological Conservation, 2011, 144(1): 526-537.
[176] GOSS-CUSTARD J D, MOSER M E. Rates of change in the numbers of dunlin, Calidris alpina, wintering in British estuaries in relation to the spread of Spartina anglica [J]. Journal of Applied Ecology, 1988, 25: 95-109.
[177] PATTEN K, O'CASEY C. Use of Willapa Bay, Washington, by shorebirds and waterfowl after Spartina control efforts [J]. Journal of Field Ornithology, 2007, 78(4): 395-400.
[178] KIM E K, KIL J, JOO Y K, et al. Distribution and botanical characteristics of unrecorded alien weed Spartina anglica in Korea. [J]. Weed & Turfgrass Science, 2015, 4(1): 65-70.
[179] LEUNG KK, CHOI CY, CLARK N A, et al. A closed-population mark-resighting estimate of the number of Spoon-billed Sandpipers at Leizhou Peninsula, Guangdong Province, China during the boreal winter. [J]. Journal of Asian Ornithology, In press.
[180] CHOWDHURY S U, FOYSAL M, DIYAN M A A, et al. Discovery of an important wintering site of the Critically Endangered Spoon-billed Sandpiper Calidris pygmaea in the Meghna Estuary, Bangladesh [J]. Bird Conservation International, 2018, 28(2): 251-262.
[181] VERMA A, VAN DER WAL R, FISCHER A. Imagining wildlife: new technologies and animal censuses, maps and museums [J]. Geoforum, 2016, 75: 75-86.
[182] KANAI Y, NAGENDRAN M, UETA M, et al. Discovery of breeding grounds of a Siberian Crane Grus leucogeranus flock that winters in Iran, via satellite telemetry [J]. Bird Conservation International, 2002, 12(4): 327-333.
[183] 杨秀林, 江红星, 邹畅林, 等. 白鹤东部种群迁徙模式与重要中途停歇地的变化 [J]. 林业科学, 2020, 56(2): 11.
[184] 王昱熙, 谢彦波, BATBAYAR N, 等. 基于卫星追踪探讨黄河流域自然保护区对3种水鸟栖息地的保护现状 [J]. 生物多样性, 2020, 28(12): 13.
[185] 曹文华, 柯娩娟, 邝粉良, 等. 东亚-澳大利西亚候鸟迁飞区中杓鹬的迁徙追踪 [J]. 动物学杂志, 2019, 54(06): 775-783.
[186] WARNOCK N, WARNOCK S. Attachment of radio-transmitters to sandpipers: review and methods [J]. Wader Study Group Bulletin, 1993, 70(6): 60-61.
[187] RAPPOLE J H, TIPTON A R. New harness design for attachment of radio transmitters to small passerines [J]. Journal of Field Ornithology, 1991, 62(3): 335-337.
[188] BRANDER R B. A radio-package harness for game birds [J]. The Journal of Wildlife Management, 1968, 32(3): 630-632.
[189] ROSHIER D A, ASMUS M W. Use of satellite telemetry on small-bodied waterfowl in Australia [J]. Marine and Freshwater Research, 2009, 60(4): 299-305.
[190] KLAASSEN R H G, ENS B J, SHAMOUN-BARANES J, et al. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus [J]. Behavioral Ecology, 2011, 23(1): 58-68.
[191] PIERSMA T, VAN GILS J, GOEIJ P, et al. Holling's functional response model as a tool to link the food-finding mechanism of a probing shorebird with its spatial distribution [J]. Journal of Animal Ecology, 1995, 64(4): 493-504.
[192] CHAN YC, BRUGGE M, TIBBITTS T L, et al. Testing an attachment method for solar-powered tracking devices on a long-distance migrating shorebird [J]. Journal of Ornithology, 2016, 157(1): 277-287.
[193] THAXTER C B, ROSS-SMITH V H, CLARK J A, et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas [J]. Ringing & Migration, 2014, 29(2): 65-76.
[194] CHANG Q, SYROECHKOVSKIY E, ANDERSON G, et al. Post-breeding migration of adult Spoon-billed Sandpipers [J]. Wader Study Group Bulletin, 2020, 127(3): 200-209.
[195] GONG P, LIU H, ZHANG MN, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J]. Science Bulletin, 2019, 64(6): 370-373.
[196] UNITED STATES GEOLOGICAL SURVEY.Copernicus Sentinel data 2021 [R]. USGS EarthExplorer: ESA, 2021.
[197] MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats [J]. Nature, 2019, 565(7738): 222-225.
[198] CHOI CY, GAN XJ, HUA N, et al. The habitat use and home range analysis of dunlin (Calidris alpina) in Chongming Dongtan, China and their conservation implications [J]. Wetlands, 2014, 34(2): 255-266.
[199] MA ZJ, LI B, ZHAO B, et al. Are artificial wetlands good alternatives to natural wetlands for waterbirds? – A case study on Chongming Island, China [J]. Biodiversity & Conservation, 2004, 13(2): 333-350.
[200] CHOI CY, PENG HB, HE P, et al. Where to draw the line? Using movement data to inform protected area design and conserve mobile species [J]. Biological Conservation, 2019, 234: 64-71.
[201] 陈中义, 李博, 陈家宽. 米草属植物入侵的生态后果及管理对策 [J]. 生物多样性, 2004, (02): 280-289.
[202] 罗祖奎. 崇明东滩水鸟对鱼塘抛荒早期阶段的反应及食物因子分析 [D]. 华东师范大学, 2010.
[203] 阎理钦, 张英, 耿德江, 等. 山东湿地水鸟食性和迁徙规律的研究 [J]. 湿地科学与管理, 2006, (02): 38-40.
[204] 林清贤, 林鹏, 陈小麟. 泉州洛江口红树林区滩涂水鸟与大型底栖动物相关关系; 第八届中国动物学会鸟类学分会全国代表大会暨第六届海峡两岸鸟类学研讨会, 中国海南海口, F, 2005 [C].
[205] YANG ZY, LAGASSÉ B J, XIAO H, et al. The southern Jiangsu coast is a critical moulting site for Spoon-billed Sandpiper Calidris pygmaea and Nordmann’s Greenshank Tringa guttifer [J]. Bird Conservation International, 2020, 30(4): 649-660.
[206] MIHALITSIS M, HEMINGSON C, GOATLEY C, et al. The role of fishes as food: a functional perspective on predator‐prey interactions [J]. Functional Ecology, 2021, 35: 1109-1119.
[207] ROGERS D I. Hidden costs: challenges faced by migratory shorebirds living on intertidal flats [D]. Charles Sturt University, 2006.
[208] CHOI CY. The Northward migration stopover ecology of Bar-tailed Godwits and Great Knots in the Yalu Jiang Estuary [D]. Massey University, 2015.
[209] SKILLETER G, CAMERON B, ZHARIKOV Y, et al. Effects of physical disturbance on infaunal and epifaunal assemblages in subtropical, intertidal seagrass beds [J]. Marine Ecology Progress Series, 2006, 308: 61-78.
[210] ASUERO A G, SAYAGO A, GONZALEZ A G. The correlation coefficient: an overview [J]. Critical Reviews in Analytical Chemistry, 2006, 36(1): 41-59.
[211] SCHONBRODT F D, PERUGINI M. At what sample size do correlations stabilize? [J]. Journal of Research in Personality, 2013, 47(5): 609-612.
[212] KEMBER G, FOWLER A C. Random sampling and the Grassberger-Procaccia Algorithm [J]. Physics Letters A, 1992, 161(5): 429-432.
[213] BONETT D G, WRIGHT T A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations [J]. Psychometrika, 2000, 65(1): 23-28.
[214] MUSILOVA Z, MUSIL P, ZOUHAR J, et al. Changes in wetland habitat use by waterbirds wintering in Czechia are related to diet and distribution changes [J]. Freshwater Biology, 2021, 67: 309-324.
[215] DEXTER D M, DAINER J S, DETWILER P M, et al. Decline of springtime abundance of the pileworm neanthes succinea in relation to hydrographic conditions at the Salton Sea, California [J]. Lake and Reservoir Management, 2007, 23(5): 570-581.
[216] DUIJNS S, HIDAYATI N A, PIERSMA T. Bar-tailed Godwits Limosa l. lapponica eat polychaete worms wherever they winter in Europe [J]. Bird Study, 2013, 60(4): 509-517.
[217] MICAEL J, NAVEDO J G. Macrobenthic communities at high southern latitudes: food supply for long‐distance migratory shorebirds [J]. Austral Ecology, 2018, 43(8): 955-964.
[218] PALMER M A, BRANDT R R. Tidal variation in sediment densities of marine benthic copepods [J]. Marine Ecology Progress Series, 1981, 4(2): 207-212.
[219] DITTMANN S. Zonation of benthic communities in a tropical tidal flat of north-east Australia [J]. Journal of Sea Research, 2000, 43(1): 33-51.
[220] ALONGI D M, CHRISTOFFERSEN P. Benthic infauna and organism-sediment relations in a shallow, tropical coastal area: influence of outwelled mangrove detritus and physical disturbance [J]. Marine Ecology Progress Series, 1992, 81(3): 229-245.
[221] BRUSATI E D, GROSHOLZ E D. Native and introduced ecosystem engineers produce contrasting effects on estuarine infaunal communities [J]. Biological Invasions, 2006, 8(4): 683-695.
[222] NEIRA C, GROSHOLZ E D, LEVIN L A, et al. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid [J]. Ecological Applications, 2006, 16(4): 1391-1404.
[223] WANG JQ, ZHANG XD, NIE M, et al. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary [J]. Ecological Engineering, 2008, 34(1): 57-64.
[224] 倪平, 董燕红, 朱艾嘉, 等. 人工拔除互花米草对红树林大型底栖动物群落的影响 [J]. 生物安全学报, 2014, 23(3): 8.
[225] 李飞飞, 高珂晓, 朱金方, 等. 综合物理防控技术对盐城大丰港互花米草的控制效果 [J]. 生态学报, 2021, 41(24): 9637-9644.
[226] BARNES R S K, ELLWOOD F. Spatial variation in the macrobenthic assemblages of intertidal seagrass along the long axis of an estuary [J]. Estuarine, Coastal & Shelf Science, 2012, 112: 173-182.

所在学位评定分委会
生物系
国内图书分类号
Q149
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335700
专题南方科技大学
工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
Lv CX. The effect of Spartina alterniflora eradication on waterbirds and benthic organisms[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930492-吕晨雪-环境科学与工程(4865KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吕晨雪]的文章
百度学术
百度学术中相似的文章
[吕晨雪]的文章
必应学术
必应学术中相似的文章
[吕晨雪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。