[1] 朱俊生. 中国新能源和可再生能源发展状况[J]. 可再生能源, 2003(02): 3-8.
[2] GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Mater, 2015, 1: 158-161.
[3] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.
[4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[5] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Adv Mater, 2018, 30(33): e1800561.
[6] LEWIS G N, KEYES F G. The potential of the lithium electrode[J]. J Am Chem Soc, 1913, 35(4): 340-344.
[7] WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[8] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. J Electrochem Soc, 1979, 126(12): 2047-2051.
[9] BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3–4): 173-183.
[10] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem Rev, 2004, 104(10): 4271-4302.
[11] DUNN B, KAMATH H, TARASCON J. M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[12] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environ Sci, 2014, 7(2): 513-537.
[13] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194-206.
[14] CHEN X, CHEN XR, HOU TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci Adv, 2019, 5(2): 7728.
[15] CHENG XB, ZHANG R, ZHAO CZ, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403-10473.
[16] HONG S T, KIM J S, LIM S J, et al. Surface characterization of emulsified lithium powder electrode[J]. Electrochem Acta, 2004, 50(2-3): 535-539.
[17] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. J Am Chem Soc, 2015, 137(48): 15209-15216.
[18] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J Electrochem Soc, 1997, 144(8): L208-L210.
[19] SHI S, PENG L, LIU Z, et al. Direct calculation of li-ion transport in the solid electrolyte interphase[J]. J Am Chem Soc, 2012, 134(37): 15476-15487.
[20] CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. J Mater Chem A, 2017, 5(23): 11671-11681.
[21] LIU N, LU Z, ZHAO J, et al. A pomegranate-inspired nanoscale design for large volume-change lithium battery anodes[J]. Nat Nanotechnol, 2014, 9(3): 187-192.
[22] QI Y, GUO H, HECTOR L G, et al. Threefold increase in the young’s modulus of graphite negative electrode during lithium intercalation[J]. J Electrochem Soc, 2010, 157(5): A558.
[23] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nat Nanotechnol, 2008, 3(1): 31-35.
[24] LU D, SHAO Y, LOZANO T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Adv Energy Mater, 2015, 5(3): 140099 3.
[25] MONROE C, NEWMAN J. Dendrite growth in lithium/polymer systems[J]. J Electrochem Soc, 2003, 150(10): A1377.
[26] LÓPEZ C M, VAUGHEY J T, DEES D W. Morphological transitions on lithium metal anodes[J]. J Electrochem Soc, 2009, 156(9): A726.
[27] 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 22.
[28] 王钢. 基于界面调控和结构设计构筑无枝晶锂金属负极[D]. 广州:华南理工大学, 2020.
[29] LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274.
[30] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nat Mater, 2014, 13(1): 69-73.
[31] ELY D R, GARCíA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. J Electrochem Soc, 2013, 160(4): A662 -A668.
[32] 郭志坤. 人造 SEI 膜界面调控金属锂负极及电化学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[33] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. J Power Sources, 1999, 81-82: 925-929.
[34] CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phy. Rev. A, 1990, 42(12): 7355-7367.
[35] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ study of dendritic growth inlithium/peo-salt/lithium cells[J]. Electrochimica Acta, 1998, 43(10): 1569-1574.
[36] YASIN G, ARIF M, MEHTAB T, et al. Understanding and suppression strategies toward stable li metal anode for safe lithium batteries[J]. Energy Storage Mater, 2020 , 25: 644-678.
[37] LU YY, TU ZY, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat Mater, 2014, 13(10): 961-969.
[38] YAMAKI J I, TOBISHIMA S I, HAYASHI K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte[J]. J Power Sources, 1998, 74(2): 219-227.
[39] MIAO RR, YANG J, XU ZX, et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Sci Rep, 2016, 6(1): 21771.
[40] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nat Energy, 2017, 2(9): 17119.
[41] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high li ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Adv Mater, 2017, 29(10): 1605531.
[42] JIN S, JIANG Y, JI HX, et al. Advanced 3d current collectors for lithium-based batteries[J]. Adv. Mater., 2018, 30(48): e1802014.
[43] XIAO YL, HAN B, ZENG Y, et al. New lithium salt forms interphases suppressing both li dendrite and polysulfide shuttling[J]. Adv Energy Mater, 2020, 10(14): 1903937.
[44] QIAN JF, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6(1): 6362.
[45] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135(11): 4450 -4456.
[46] LIU B, ZHANG JG, XU W. Advancing lithium metal batteries[J]. Joule, 2018 , 2(5): 833-845.
[47] REN X, ZHANG Y, ENGELHARD M H, et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2018, 3(1): 14-19.
[48] MA YL, ZHOU ZX, LI CJ, et al. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Mater., 2018, 11: 197 -204.
[49] GUO J, WEN Z, WU M, et al. Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochem Commun, 2015, 51: 59-63.
[50] LI T, ZHANG XQ, SHI P, et al. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries[J]. Joule, 2019, 3(11): 2647-2661.
[51] ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. J Am Chem Soc, 2017, 139(33): 11550-11558.
[52] CHENG XB, CHONG Y, XIANG C, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270.
[53] XIONG S, XIE K, HONG X, et al. Effect of LiNO3 as additive on electrochemical properties of lithium-sulfur batteries[J]. Ionics, 2012, 18(3): 249-254.
[54] CHEN J, FAN XL, LI Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nat Energy, 2020, 5(5): 386-397.
[55] QIAN J, XU W, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144.
[56] LI WY, YAO HB, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat Commun, 2015, 6: 7436.
[57] YAMADA Y, YAMADA A. Review—superconcentrated electrolytes for lithium batteries[J]. J Electrochem Soc, 2015, 162(14): A2406-A2423.
[58] SUO LM, HU YS, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat Commun, 2013, 4(1): 1481.
[59] FAN X, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage li metal batteries[J]. Chem, 2018, 4(1): 174-185.
[60] XU R, CHENG XB, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.
[61] HOOD Z D, WANG H, PANDIAN A S, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. J Am Chem Soc, 2016, 138(6): 1768-1771.
[62] ZHANG YJ, WANG W, TANG H, et al. An ex-situ nitridation route to synthesize Li3N modified li anodes for lithium secondary batteries[J]. J Power Sources, 2015, 277: 304-311.
[63] LANG JL, LONG YZ, QU JL, et al. One-pot solution coating of high quality lif layer to stabilize li metal anode[J]. Energy Storage Mater, 2019, 16: 85 -90.
[64] LI NW, YIN YX, YANG CP, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv Mater, 2016, 28(9): 1853-1858.
[65] KOZEN A C, LIN CF, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884 -5892.
[66] LI NW, SHI Y, YIN YX, et al. A flexible solid electrolyte interphase layer for long life lithium metal anodes[J]. Angew Chem Int Ed, 2018, 57(6): 1505 -1509.
[67] JIANG S, LU Y, LU Y, et al. Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries[J]. Chem Asian J, 2018, 13(10): 1379-1385.
[68] LI S, FAN L, LU YY. Rational design of robust-flexible protective layer for safe lithium metal battery[J]. Energy Storage Mater, 2019, 18: 205-212.
[69] KWAK W J, PARK J, NGUYEN T T, et al. A dendrite- and oxygen-proof protective layer for lithium metal in lithium–oxygen batteries[J]. J Mater Chem A, 2019, 7(8): 3857-3862.
[70] GAO Y, YAN Z, GRAY J L, et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions[J]. Nat Mater, 2019 , 18(4): 384-389.
[71] LIU X, LIU J, QIAN T, et al. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free Lithium metal anode[J]. Adv Mater, 2020, 32(2): 1902724.
[72] XU R, XIAO Y, ZHANG R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Adv Mater, 2019, 31(19): e1808392.
[73] QIU H, TANG T, ASIF M, et al. 3D porous cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance[J]. Adv Funct Mater, 2019, 29(19): 1808468.
[74] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3d current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6(1): 8058.
[75] ZHAO H, LEI DN, HE YB, et al. Compact 3d copper with uniform porous structure derived by electrochemical dealloying as dendrite -free lithium metal anode current collector[J]. Adv Energy Mater, 2018, 8(19): 1800266.
[76] LIN DC, LIU YY, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat Nanotechnol, 2016, 11(7): 626-632.
[77] YAN K, LU ZD, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nat Energy, 2016, 1(3): 16010.
[78] JIN S, YE Y, NIU Y, et al. Solid–solution-based metal alloy phase for highly reversible lithium metal anode[J]. J Am Chem Soc, 2020, 142(19): 8818-8826.
[79] ZHUANG HF, ZHAO P, LI GD, et al. Li–LiAl alloy composite with memory effect as high-performance lithium metal anode[J]. J Power Sources, 2020, 455: 227977.
[80] CHEN T, KONG WH, ZHAO PY, et al. Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase[J]. Chem Mater, 2019, 31(18): 7565-7573.
[81] OBROVAC M N, CHEVRIER V L. Alloy negative electrodes for li-ion batteries[J]. Chem Rev, 2014, 114(23): 11444-11502.
[82] JIANG J, PAN Z, KOU Z, et al. Lithiophilic polymer interphase anchored on laser punched 3d holey Cu matrix enables uniform lithium nucleation leading to super stable lithium metal anodes[J]. Energy Storage Mater, 2020, 29: 84-91.
[83] WANG R, YU J, TANG J, et al. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode[J]. Energy Storage Mater, 2020, 32: 178-184.
[84] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nat Energy, 2017, 2(9): 17119.
[85] LI NW, YIN YX, YANG CP, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv Mater, 2016, 28(9): 1853-1858.
[86] NOH J, TAN J, YADAV D R, et al. Understanding of lithium insertion into 3d porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by in -operando study[J]. Nano Lett, 2020, 20(5): 3681-3687.
[87] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nat Mater, 2017, 16(1): 16-22.
[88] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587-603.
[89] ZENG J, LIU Q, JIA D, et al. A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries[J]. Energy Storage Mater, 2021, 41: 697-702.
[90] 丁开国. 定位磺化壳聚糖生物活性的研究[D]. 苏州:苏州大学, 2015.
[91] ADAMS B D, ZHENG J, REN X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Adv Energy Mater, 2018, 8(7): 1702097.
修改评论