中文版 | English
题名

亲锂聚合物与超薄纳米金属层协同 抑制锂枝晶生长

其他题名
Coupling Lithiophilic Polymer and Ultra-Thin Nano-Metal Layer to Prevent Lithium Dendrites
姓名
姓名拼音
LIAO Kemeng
学号
11930247
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
卢周广
导师单位
材料科学与工程系
论文答辩日期
2022-04-29
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

使用锂金属作为负极的金属锂电池能量密度高,但存在锂枝晶引起的循环寿命差和安全性能低等关键问题。在电化学沉积过程中,锂离子在集流体表面的不均匀分布是锂枝晶生长主要原因。因此,调控电极表面锂离子浓度和电场的均匀分布是抑制锂枝晶的根本策略。本论文通过在金属锂负极表面修饰纳米金属层以及亲锂聚合物,协同作用均匀电场和离子分布从而保证锂金属均匀沉积,缓解枝晶生长。

通过在CuCl2/DMSO溶液中的置换反应,在锂金属表面构筑一层均匀的3D纳米铜层并修饰一层锂离子传导率高的Li-Nafion膜,通过调控锂离子均匀沉积行为协同抑制锂金属负极的副反应,有效抑制了锂枝晶的生长。在金属锂表面原位生长的3D纳米铜层能够在电极表面提供均匀的电场,可以调控锂离子沉积行为;同时Li-Nafion膜具有均匀化锂离子通量,并为电极提供持续保护的作用。经过这两个修饰层的协同作用,NCuLi||LiCoO2全电池在经过500圈循环后,其容量仍然有122 mAh g-1,容量保持率为90.4%。

在AgTFSI/DME溶液中利用原位表面取代法在金属锂负极表面修饰一层亲锂纳米银层,同时采用柔韧性更好的壳聚糖磺酸锂作为保护层,利用两者的协同作用成功制备出稳定的锂金属负极。其中亲锂纳米银具有降低锂沉积过电位的功能,可以引导锂均匀沉积,同时壳聚糖磺酸锂具有保护锂金属负极的作用。在亲锂纳米银层与壳聚糖磺酸锂协同作用下,CAgLi||LiCoO2全电池在循环350圈后,其容量仍然有119 mAh g-1,容量保持率为83.8%。

本论文从调控锂离子沉积行为的角度出发,同时均匀化锂离子通量和界面的电场分布,成功制备了高稳定性的锂金属负极,为解决锂金属枝晶问题提供了新思路。

其他摘要

Lithium metal batteries with ultra-high theoretical energy density suffer from key issues such as poor cyclic stability and serious safety issues. However, the fundamental reason for the growth of Li dendrites is the uneven deposition of Li ions on the electrode surface. Therefore, regulating uniform conduction of Li ions and constructing evenly distributed electric fields at the electrode interface is critical to realizing dendrite-free Li metal anodes. In this article, the method of modifying the nano-metal layer and lithiophilic polymer on the surface of the Li metal anode was proposed. The synergistic effect between regulating uniform Li-ions deposition behavior by the nano-metal layer and homogenizing Li-ions flux through the lithiophilic polymer effectively inhibits the growth of Li dendrites.

In this experiment, a uniform 3D nano-copper layer and Li-Nafion film with good ion conductivity were constructed on Li metal anode. The 3D nano-copper layer grown on the surface of Li metal anode through an in-situ way could provide a uniform electric field near the electrode surface, which could regulate the deposition behavior of Li ions. Meanwhile, with high Li-ions conductivity and good flexibility, the Li-Nafion film could ameliorate Li-ions conduction and provide continuous protection for Li metal anode. After the modification, the NCuLi symmetric cell showed better cycling stability after 800 h, and the NCuLi||LiCoO2 full cell exhibited stable cycling performance, with a capacity retention rate of 90.4% after cycling for 500 cycles.

In addition, a layer of lithiophilic nano-silver layer was constructed on the surface of Li metal anode by in-situ surface substitution method, and a more flexible ionic polymer lithium chitosan sulfonate was used as the interface protection layer. Lithophilic nano-silver has the functions of reducing the overpotential of Li deposition and improving the efficiency of interfacial charge transfer, which could guide the uniform Li deposition behavior. Simultaneously, lithium chitosan sulfonate could fast and uniformly promote the conduction of Li ions and protect Li metal anode. Due to this synergistic effect, the specific discharge capacity of CAgLi||LiCoO2 full cell had been improved significantly after cycling for more than 350 cycles, with a capacity retention of 83.8%.

In this paper, from the perspective of regulating Li-ions deposition behavior, by simultaneously homogenizing the Li-ions flux and the electric field distribution at the interface, we have successfully prepared highly stable Li metal anodes, which provides a novel idea for the theoretical study of suppressing Li dendrite growth.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 朱俊生. 中国新能源和可再生能源发展状况[J]. 可再生能源, 2003(02): 3-8.
[2] GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Mater, 2015, 1: 158-161.
[3] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.
[4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[5] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Adv Mater, 2018, 30(33): e1800561.
[6] LEWIS G N, KEYES F G. The potential of the lithium electrode[J]. J Am Chem Soc, 1913, 35(4): 340-344.
[7] WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[8] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. J Electrochem Soc, 1979, 126(12): 2047-2051.
[9] BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3–4): 173-183.
[10] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem Rev, 2004, 104(10): 4271-4302.
[11] DUNN B, KAMATH H, TARASCON J. M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[12] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environ Sci, 2014, 7(2): 513-537.
[13] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194-206.
[14] CHEN X, CHEN XR, HOU TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci Adv, 2019, 5(2): 7728.
[15] CHENG XB, ZHANG R, ZHAO CZ, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403-10473.
[16] HONG S T, KIM J S, LIM S J, et al. Surface characterization of emulsified lithium powder electrode[J]. Electrochem Acta, 2004, 50(2-3): 535-539.
[17] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. J Am Chem Soc, 2015, 137(48): 15209-15216.
[18] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J Electrochem Soc, 1997, 144(8): L208-L210.
[19] SHI S, PENG L, LIU Z, et al. Direct calculation of li-ion transport in the solid electrolyte interphase[J]. J Am Chem Soc, 2012, 134(37): 15476-15487.
[20] CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. J Mater Chem A, 2017, 5(23): 11671-11681.
[21] LIU N, LU Z, ZHAO J, et al. A pomegranate-inspired nanoscale design for large volume-change lithium battery anodes[J]. Nat Nanotechnol, 2014, 9(3): 187-192.
[22] QI Y, GUO H, HECTOR L G, et al. Threefold increase in the young’s modulus of graphite negative electrode during lithium intercalation[J]. J Electrochem Soc, 2010, 157(5): A558.
[23] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nat Nanotechnol, 2008, 3(1): 31-35.
[24] LU D, SHAO Y, LOZANO T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Adv Energy Mater, 2015, 5(3): 140099 3.
[25] MONROE C, NEWMAN J. Dendrite growth in lithium/polymer systems[J]. J Electrochem Soc, 2003, 150(10): A1377.
[26] LÓPEZ C M, VAUGHEY J T, DEES D W. Morphological transitions on lithium metal anodes[J]. J Electrochem Soc, 2009, 156(9): A726.
[27] 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 22.
[28] 王钢. 基于界面调控和结构设计构筑无枝晶锂金属负极[D]. 广州:华南理工大学, 2020.
[29] LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274.
[30] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nat Mater, 2014, 13(1): 69-73.
[31] ELY D R, GARCíA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. J Electrochem Soc, 2013, 160(4): A662 -A668.
[32] 郭志坤. 人造 SEI 膜界面调控金属锂负极及电化学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[33] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. J Power Sources, 1999, 81-82: 925-929.
[34] CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phy. Rev. A, 1990, 42(12): 7355-7367.
[35] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ study of dendritic growth inlithium/peo-salt/lithium cells[J]. Electrochimica Acta, 1998, 43(10): 1569-1574.
[36] YASIN G, ARIF M, MEHTAB T, et al. Understanding and suppression strategies toward stable li metal anode for safe lithium batteries[J]. Energy Storage Mater, 2020 , 25: 644-678.
[37] LU YY, TU ZY, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat Mater, 2014, 13(10): 961-969.
[38] YAMAKI J I, TOBISHIMA S I, HAYASHI K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte[J]. J Power Sources, 1998, 74(2): 219-227.
[39] MIAO RR, YANG J, XU ZX, et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Sci Rep, 2016, 6(1): 21771.
[40] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nat Energy, 2017, 2(9): 17119.
[41] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high li ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Adv Mater, 2017, 29(10): 1605531.
[42] JIN S, JIANG Y, JI HX, et al. Advanced 3d current collectors for lithium-based batteries[J]. Adv. Mater., 2018, 30(48): e1802014.
[43] XIAO YL, HAN B, ZENG Y, et al. New lithium salt forms interphases suppressing both li dendrite and polysulfide shuttling[J]. Adv Energy Mater, 2020, 10(14): 1903937.
[44] QIAN JF, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6(1): 6362.
[45] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135(11): 4450 -4456.
[46] LIU B, ZHANG JG, XU W. Advancing lithium metal batteries[J]. Joule, 2018 , 2(5): 833-845.
[47] REN X, ZHANG Y, ENGELHARD M H, et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2018, 3(1): 14-19.
[48] MA YL, ZHOU ZX, LI CJ, et al. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Mater., 2018, 11: 197 -204.
[49] GUO J, WEN Z, WU M, et al. Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochem Commun, 2015, 51: 59-63.
[50] LI T, ZHANG XQ, SHI P, et al. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries[J]. Joule, 2019, 3(11): 2647-2661.
[51] ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. J Am Chem Soc, 2017, 139(33): 11550-11558.
[52] CHENG XB, CHONG Y, XIANG C, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270.
[53] XIONG S, XIE K, HONG X, et al. Effect of LiNO3 as additive on electrochemical properties of lithium-sulfur batteries[J]. Ionics, 2012, 18(3): 249-254.
[54] CHEN J, FAN XL, LI Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nat Energy, 2020, 5(5): 386-397.
[55] QIAN J, XU W, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144.
[56] LI WY, YAO HB, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat Commun, 2015, 6: 7436.
[57] YAMADA Y, YAMADA A. Review—superconcentrated electrolytes for lithium batteries[J]. J Electrochem Soc, 2015, 162(14): A2406-A2423.
[58] SUO LM, HU YS, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat Commun, 2013, 4(1): 1481.
[59] FAN X, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage li metal batteries[J]. Chem, 2018, 4(1): 174-185.
[60] XU R, CHENG XB, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.
[61] HOOD Z D, WANG H, PANDIAN A S, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. J Am Chem Soc, 2016, 138(6): 1768-1771.
[62] ZHANG YJ, WANG W, TANG H, et al. An ex-situ nitridation route to synthesize Li3N modified li anodes for lithium secondary batteries[J]. J Power Sources, 2015, 277: 304-311.
[63] LANG JL, LONG YZ, QU JL, et al. One-pot solution coating of high quality lif layer to stabilize li metal anode[J]. Energy Storage Mater, 2019, 16: 85 -90.
[64] LI NW, YIN YX, YANG CP, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv Mater, 2016, 28(9): 1853-1858.
[65] KOZEN A C, LIN CF, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884 -5892.
[66] LI NW, SHI Y, YIN YX, et al. A flexible solid electrolyte interphase layer for long life lithium metal anodes[J]. Angew Chem Int Ed, 2018, 57(6): 1505 -1509.
[67] JIANG S, LU Y, LU Y, et al. Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries[J]. Chem Asian J, 2018, 13(10): 1379-1385.
[68] LI S, FAN L, LU YY. Rational design of robust-flexible protective layer for safe lithium metal battery[J]. Energy Storage Mater, 2019, 18: 205-212.
[69] KWAK W J, PARK J, NGUYEN T T, et al. A dendrite- and oxygen-proof protective layer for lithium metal in lithium–oxygen batteries[J]. J Mater Chem A, 2019, 7(8): 3857-3862.
[70] GAO Y, YAN Z, GRAY J L, et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions[J]. Nat Mater, 2019 , 18(4): 384-389.
[71] LIU X, LIU J, QIAN T, et al. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free Lithium metal anode[J]. Adv Mater, 2020, 32(2): 1902724.
[72] XU R, XIAO Y, ZHANG R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Adv Mater, 2019, 31(19): e1808392.
[73] QIU H, TANG T, ASIF M, et al. 3D porous cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance[J]. Adv Funct Mater, 2019, 29(19): 1808468.
[74] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3d current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6(1): 8058.
[75] ZHAO H, LEI DN, HE YB, et al. Compact 3d copper with uniform porous structure derived by electrochemical dealloying as dendrite -free lithium metal anode current collector[J]. Adv Energy Mater, 2018, 8(19): 1800266.
[76] LIN DC, LIU YY, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat Nanotechnol, 2016, 11(7): 626-632.
[77] YAN K, LU ZD, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nat Energy, 2016, 1(3): 16010.
[78] JIN S, YE Y, NIU Y, et al. Solid–solution-based metal alloy phase for highly reversible lithium metal anode[J]. J Am Chem Soc, 2020, 142(19): 8818-8826.
[79] ZHUANG HF, ZHAO P, LI GD, et al. Li–LiAl alloy composite with memory effect as high-performance lithium metal anode[J]. J Power Sources, 2020, 455: 227977.
[80] CHEN T, KONG WH, ZHAO PY, et al. Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase[J]. Chem Mater, 2019, 31(18): 7565-7573.
[81] OBROVAC M N, CHEVRIER V L. Alloy negative electrodes for li-ion batteries[J]. Chem Rev, 2014, 114(23): 11444-11502.
[82] JIANG J, PAN Z, KOU Z, et al. Lithiophilic polymer interphase anchored on laser punched 3d holey Cu matrix enables uniform lithium nucleation leading to super stable lithium metal anodes[J]. Energy Storage Mater, 2020, 29: 84-91.
[83] WANG R, YU J, TANG J, et al. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode[J]. Energy Storage Mater, 2020, 32: 178-184.
[84] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nat Energy, 2017, 2(9): 17119.
[85] LI NW, YIN YX, YANG CP, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv Mater, 2016, 28(9): 1853-1858.
[86] NOH J, TAN J, YADAV D R, et al. Understanding of lithium insertion into 3d porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by in -operando study[J]. Nano Lett, 2020, 20(5): 3681-3687.
[87] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nat Mater, 2017, 16(1): 16-22.
[88] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587-603.
[89] ZENG J, LIU Q, JIA D, et al. A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries[J]. Energy Storage Mater, 2021, 41: 697-702.
[90] 丁开国. 定位磺化壳聚糖生物活性的研究[D]. 苏州:苏州大学, 2015.
[91] ADAMS B D, ZHENG J, REN X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Adv Energy Mater, 2018, 8(7): 1702097.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335703
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
廖科萌. 亲锂聚合物与超薄纳米金属层协同 抑制锂枝晶生长[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930247-廖科萌-材料科学与工程(5487KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[廖科萌]的文章
百度学术
百度学术中相似的文章
[廖科萌]的文章
必应学术
必应学术中相似的文章
[廖科萌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。