[1] DIFFENBAUGH N S, FIELD C B. Changes in Ecologically Critical Terrestrial Climate Conditions[J]. Science, 2013, 341(6145): 486-492.
[2] KEMP D B, EICHENSEER K, KIESSLING W. Maximum rates of climate change are systematically underestimated in the geological record[J]. Nature Communications, 2015, 6.
[3] CARDINALE B J, DUFFY J E, GONZALEZ A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401): 59-67.
[4] PECL G T, ARAUJO M B, BELL J D, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being[J]. Science, 2017, 355(6332).
[5] ROSENZWEIG C, KAROLY D, VICARELLI M, et al. Attributing physical and biological impacts to anthropogenic climate change[J]. Nature, 2008, 453(7193): 353-U320.
[6] SCHUERCH M, SPENCER T, TEMMERMAN S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722): 231.
[7] THOMAS C D. Climate, climate change and range boundaries[J]. Diversity and Distributions, 2010, 16(3): 488-495.
[8] CAHILL A E, AIELLO-LAMMENS M E, FISHER-REID M C, et al. How does climate change cause extinction?[J]. Proceedings of the Royal Society B-Biological Sciences, 2013, 280(1750).
[9] FROLICHER T L, FISCHER E M, GRUBER N. Marine heatwaves under global warming[J]. Nature, 2018, 560(7718): 360.
[10] HUGHES T P, KERRY J T, ALVAREZ-NORIEGA M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373.
[11] WERNBERG T, SMALE D A, TUYA F, et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot[J]. Nature Climate Change, 2013, 3(1): 78-82.
[12] PERKINS S E, ALEXANDER L V, NAIRN J R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells[J]. Geophysical Research Letters, 2012, 39.
[13] THOMAS C D, CAMERON A, GREEN R E, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970): 145-148.
[14] ALLEN M R, INGRAM W J. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 2002, 419(6903): 224-232.
[15] MOORE J K, FU W W, PRIMEAU F, et al. Sustained climate warming drives declining marine biological productivity[J]. Science, 2018, 359(6380): 1139-1142.
[16] DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11): 961-968.
[17] KAUFFMAN J B, ADAME M F, ARIFANTI V B, et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients[J]. Ecological Monographs, 2020, 90(2).
[18] VAUGHN D R, BIANCHI T S, SHIELDS M R, et al. Increased Organic Carbon Burial in Northern Florida Mangrove-Salt Marsh Transition Zones[J]. Global Biogeochemical Cycles, 2020, 34(5).
[19] ASBRIDGE E, LUCAS R, TICEHURST C, et al. Mangrove response to environmental change in Australia's Gulf of Carpentaria[J]. Ecology and Evolution, 2016, 6(11): 3523-3539.
[20] MINU A, ROUTH J, MACHIWA J F. Distribution and sources of organic matter in the Rufiji Delta in Tanzania: Variability and environmental implications[J]. Applied Geochemistry, 2020, 122.
[21] CHEN G C, GAO M, PANG B P, et al. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages[J]. Forest Ecology and Management, 2018, 422: 87-94.
[22] MARCHIO D A, SAVARESE M, BOVARD B, et al. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida[J]. Forests, 2016, 7(6).
[23] LOVELOCK C E, ADAME M F, BENNION V, et al. Contemporary Rates of Carbon Sequestration Through Vertical Accretion of Sediments in Mangrove Forests and Saltmarshes of South East Queensland, Australia[J]. Estuaries and Coasts, 2014, 37(3): 763-771.
[24] DOUGHTY C L, LANGLEY J A, WALKER W S, et al. Mangrove Range Expansion Rapidly Increases Coastal Wetland Carbon Storage[J]. Estuaries and Coasts, 2016, 39(2): 385-396.
[25] AKHAND A, WATANABE K, CHANDA A, et al. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum[J]. Science of the Total Environment, 2021, 752.
[26] SAINTILAN N, WILSON N C, ROGERS K, et al. Mangrove expansion and salt marsh decline at mangrove poleward limits[J]. Global Change Biology, 2014, 20(1): 147-157.
[27] CAVANAUGH K C, DANGREMOND E M, DOUGHTY C L, et al. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years[J]. Proceedings of the National Academy of Sciences, 2019, 116(43): 21602-21608.
[28] BARGER N N, ARCHER S R, CAMPBELL J L, et al. Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116.
[29] SULLIVAN C R, SMYTH A R, MARTIN C W, et al. How Does Mangrove Expansion Affect Structure and Function of Adjacent Seagrass Meadows?[J]. Estuaries and Coasts, 2021.
[30] SIMPSON L T, CHERRY J A, SMITH R S, et al. Mangrove Encroachment Alters Decomposition Rate in Saltmarsh Through Changes in Litter Quality[J]. Ecosystems, 2020.
[31] SIMPSON L T, OSBORNE T Z, DUCKETT L J, et al. Carbon Storages along a Climate Induced Coastal Wetland Gradient[J]. Wetlands, 2017, 37(6): 1023-1035.
[32] BIANCHI T S, ALLISON M A, ZHAO J, et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands[J]. Estuarine Coastal and Shelf Science, 2013, 119: 7-16.
[33] COMEAUX R S, ALLISON M A, BIANCHI T S. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels[J]. Estuarine Coastal and Shelf Science, 2012, 96: 81-95.
[34] BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19473-19481.
[35] 陈清华,程琪,赵蒙蒙,等.我国红树林生态修复现状研究[C]//中国陕西西安 中国环境科学学会(Chinese Society for Environmental Sciences),2019:4098-4102.
[36] 王浩,任广波,吴培强,等.1990—2019年中国红树林变迁遥感监测与景观格局变化分析[J]. 海洋技术学报, 2020, 39(05): 1-12.
[37] 侯宽昭, 何椿年. 中国的红树林[J]. 生物学通报, 1953(10): 366-369.
[38] 刘源鑫, 赵文武.北京师范大学资源学院.未来地球——全球可持续性研究计划[J]. 生态学报, 2013, 33(23): 7610-7613.
[39] HONG P, WEN Y, XIONG Y, et al. Latitudinal gradients and climatic controls on reproduction and dispersal of the non-native mangrove Sonneratia apetala in China[J]. Estuarine, Coastal and Shelf Science, 2020: 106749.
[40] HU W J, WANG Y Y, ZHANG D, et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China[J]. Science of the Total Environment, 2020, 748.
[41] PENG Y S, ZHENG M X, ZHENG Z X, et al. Virtual increase or latent loss? A reassessment of mangrove populations and their conservation in Guangdong, southern China[J]. Marine Pollution Bulletin, 2016, 109(2): 691-699.
[42] 高云芳,郭芳芳,张媛媛,等.黄河三角洲滨海湿地经济·生态·社会功能综述[J].安徽农业科学, 2020, 48(23): 23-27.
[43] WANG F, CHENG P, CHEN N, et al. Tidal driven nutrient exchange between mangroves and estuary reveals a dynamic source-sink pattern[J]. Chemosphere, 2020: 128665.
[44] ZHANG L L, ZHANG S P, GUO J, et al. Dynamic distribution of microplastics in mangrove sediments in Beibu Gulf, South China: Implications of tidal current velocity and tidal range[J]. Journal of Hazardous Materials, 2020, 399.
[45] HUANG Q, ZHU Y X, WU F, et al. Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait, China: Characteristics, sources and ecological risk assessment[J]. Chemosphere, 2021, 265.
[46] JI C Y, LIU Y Y, WU D, et al. Dynamic change in particulate palladium concentrations in a mangrove wetland water environment and its mechanism in Dongzhai Harbor, China[J]. Water Science and Technology, 2020, 82(11): 2503-2512.
[47] TIAN Y, YAN C L, WANG Q, et al. Glomalin-related soil protein enriched in 5 13 C and 5 15 N excels at storing blue carbon in mangrove wetlands[J]. Science of the Total Environment, 2020, 732.
[48] ZHANG M P, DAI P L, LIN X L, et al. Nitrogen loss by anaerobic ammonium oxidation in a mangrove wetland of the Zhangjiang Estuary, China[J]. Science of the Total Environment, 2020, 698.
[49] 谈思泳,邱广龙,范航清,等.广西红树林群落表层沉积物有机碳的初步研究[J].绿色科技, 2017(04): 4-8.
[50] 何琴飞,郑威,黄小荣,等.广西钦州湾红树林碳储量与分配特征[J].中南林业科技大学学报, 2017, 37(11): 121-126.
[51] 谭趣孜,巫冷蝉.广西红树林区海水中总有机碳的分布特征[J].环境与发展, 2017, 29(10): 183-184.
[52] 陶玉华,黄星,王薛平,等.广西仙岛公园和沙井红树林土壤碳氮储量的空间分布[J].渔业科学进展, 2020, 41(05): 38-45.
[53] 陶玉华,黄星,王薛平,等.广西珍珠湾三种红树林林分土壤碳氮储量的研究[J].广西植物, 2020, 40(03): 285-292.
[54] 王亚丽,张芬芬,陈小刚,等.海底地下水排放对典型红树林蓝碳收支的影响——以广西珍珠湾为例[J].海洋学报, 2020, 42(10): 37-46.
[55] 赵华显,阎冰,徐悦,等.北部湾红树林沉积物中微生物群落结构的时空变化分析[J].基因组学与应用生物学, 2020, 39(05): 2161-2169.
[56] MENG X W, XIA P, LI Z, et al. Mangrove forest degradation indicated by mangrove-derived organic matter in the Qinzhou Bay, Guangxi, China, and its response to the Asian monsoon during the Holocene climatic optimum[J]. Acta Oceanologica Sinica, 2016, 35(2): 95-100.
[57] XIA P, MENG X W, LI Z, et al. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years: Stable carbon isotopes and mangrove pollen[J]. Organic Geochemistry, 2015, 85: 32-41.
[58] KELLEWAY J J, CAVANAUGH K, ROGERS K, et al. Review of the ecosystem service implications of mangrove encroachment into salt marshes[J]. Global Change Biology, 2017, 23(10): 3967-3983.
[59] SENGER D F, HORTUA D A S, ENGEL S, et al. Impacts of wetland dieback on carbon dynamics: A comparison between intact and degraded mangroves[J]. Science of the Total Environment, 2021, 753.
[60] HIEU P V, DUNG L V, TUE N T, et al. Will restored mangrove forests enhance sediment organic carbon and ecosystem carbon storage?[J]. Regional Studies in Marine Science, 2017, 14: 43-52.
[61] WONG V N L, REEF R E, CHAN C, et al. Organic carbon fractions in temperate mangrove and saltmarsh soils[J]. Soil Research, 2021, 59(1): 34-43.
[62] HERRERA SILVEIRA J A, CAMACHO RICO A, PECH E, et al. Dinámica del carbono (almacenes y flujos) en manglares de México[J]. Terra Latinoamericana, 2016, 34(1): 61-72.
[63] ESPINOZA-TENORIO A, MILLáN-VáSQUEZ N I, VITE-GARCíA N, et al. People and Blue Carbon: Conservation and Settlements in the Mangrove Forests of Mexico[J]. Human Ecology, 2019, 47(6): 877-892.
[64] KUSUMANINGTYAS M A, HUTAHAEAN A A, FISCHER H W, et al. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems[J]. Estuarine Coastal and Shelf Science, 2019, 218: 310-323.
[65] MEYERS P A. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic-Matter[J]. Chemical Geology, 1994, 114(3-4): 289-302.
[66] BARRY S C, BIANCHI T S, SHIELDS M R, et al. Characterizing blue carbon stocks in Thalassia testudinum meadows subjected to different phosphorus supplies: A lignin biomarker approach[J]. Limnology and Oceanography, 2018, 63(6): 2630-2646.
[67] KELLEWAY J J, MAZUMDER D, BALDOCK J A, et al. Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research[J]. Estuarine Coastal and Shelf Science, 2018, 205: 68-74.
[68] RANI V, NANDAN S B, SCHWING P T. Carbon source characterisation and historical carbon burial in three mangrove ecosystems on the South West coast of India[J]. Catena, 2021, 197.
[69] TUE N T, NGOC N T, QUY T D, et al. A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam[J]. Journal of Sea Research, 2012, 67(1): 69-76.
[70] WOODROFFE C D, ROGERS K, MCKEE K L, et al. Mangrove Sedimentation and Response to Relative Sea-Level Rise[J]. Annual Review of Marine Science, Vol 8, 2016, 8: 243-266.
[71] BIANCHETTE T A, LIU K B, QIANG Y, et al. Wetland Accretion Rates Along Coastal Louisiana: Spatial and Temporal Variability in Light of Hurricane Isaac's Impacts[J]. Water, 2016, 8(1).
[72] MCKEE K L, MENDELSSOHN I A, HESTER M W. Hurricane sedimentation in a subtropical salt marsh-mangrove community is unaffected by vegetation type[J]. Estuarine Coastal and Shelf Science, 2020, 239.
[73] OSLAND M J, ENWRIGHT N M, DAY R H, et al. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change[J]. Global Change Biology, 2016, 22(1): 1-11.
[74] XIMENES A C, MAEDA E E, ARCOVERDE G F B, et al. Spatial Assessment of the Bioclimatic and Environmental Factors Driving Mangrove Tree Species' Distribution along the Brazilian Coastline[J]. Remote Sensing, 2016, 8(6).
[75] ADAME M F, LOVELOCK C E. Carbon and nutrient exchange of mangrove forests with the coastal ocean[J]. Hydrobiologia, 2011, 663(1): 23-50.
[76] HINSON A L, FEAGIN R A, ERIKSSON M. Environmental Controls on the Distribution of Tidal Wetland Soil Organic Carbon in the Continental United States[J]. Global Biogeochemical Cycles, 2019, 33(11): 1408-1422.
[77] EID E M, KHEDHER K M, AYED H, et al. Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia[J]. Oceanologia, 2020, 62(2): 200-213.
[78] JENNERJAHN T C. Relevance and magnitude of 'Blue Carbon' storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks[J]. Estuarine Coastal and Shelf Science, 2020, 247.
[79] WARD R D. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change[J]. Science of the Total Environment, 2020, 748.
[80] BREITHAUPT J L, SMOAK J M, RIVERA-MONROY V H, et al. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils[J]. Marine Geology, 2017, 390: 170-180.
[81] BOURGEOIS C, ALFARO A C, DENCER-BROWN A, et al. Stocks and soil-plant transfer of macro-nutrients and trace metals in temperate New Zealand estuarine mangroves[J]. Plant and Soil, 2019, 436(1-2): 565-586.
[82] CAHOON D R, MCKEE K L, MORRIS J T. How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise[J]. Estuaries and Coasts, 2020.
[83] KIDA M, FUJITAKE N. Organic Carbon Stabilization Mechanisms in Mangrove Soils: A Review[J]. Forests, 2020, 11(9).
[84] KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478): 53-60.
[85] MANDAL S K, RAY R, GONZALEZ A G, et al. State of rare earth elements in the sediment and their bioaccumulation by mangroves: a case study in pristine islands of Indian Sundarban[J]. Environmental Science and Pollution Research, 2019, 26(9): 9146-9160.
[86] PEREZ A, GUTIERREZ D, SALDARRIAGA M S, et al. Tidally driven sulfidic conditions in Peruvian mangrove sediments[J]. Geo-Marine Letters, 2018, 38(5): 457-465.
[87] MARCHAND C, LALLIER-VERGES E, BALTZER F. The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana[J]. Estuarine Coastal and Shelf Science, 2003, 56(1): 119-130.
[88] OWERS C J, ROGERS K, MAZUMDER D, et al. Temperate coastal wetland near-surface carbon storage: Spatial patterns and variability[J]. Estuarine Coastal and Shelf Science, 2020, 235.
[89] FREEMAN C, OSTLE N J, FENNER N, et al. A regulatory role for phenol oxidase during decomposition in peatlands[J]. Soil Biology & Biochemistry, 2004, 36(10): 1663-1667.
[90] SARASWATI S, DUNN C, MITSCH W J, et al. Is peat accumulation in mangrove swamps influenced by the "enzymic latch" mechanism?[J]. Wetlands Ecology and Management, 2016, 24(6): 641-650.
[91] KIM J, LEE J, YANG Y, et al. Microbial decomposition of soil organic matter determined by edaphic characteristics of mangrove forests in East Asia[J]. Science of the Total Environment, 2021, 763: 142972.
[92] HALL S J, SILVER W L, TIMOKHIN V I, et al. Iron addition to soil specifically stabilized lignin[J]. Soil Biology & Biochemistry, 2016, 98: 95-98.
[93] ARMITAGE A R, WEAVER C A, KOMINOSKI J S, et al. Resistance to Hurricane Effects Varies Among Wetland Vegetation Types in the Marsh-Mangrove Ecotone[J]. Estuaries and Coasts, 2020, 43(5): 960-970.
[94] STEINMULLER H E, FOSTER T E, BOUDREAU P, et al. Tipping Points in the Mangrove March: Characterization of Biogeochemical Cycling Along the Mangrove-Salt Marsh Ecotone[J]. Ecosystems, 2020, 23(2): 417-434.
[95] CHARLES S P, KOMINOSKI J S, ARMITAGE A R, et al. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands[J]. Ecology, 2020, 101(2).
[96] BREITHAUPT J L, SMOAK J M, BIANCHI T S, et al. Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands[J]. Journal of Geophysical Research-Biogeosciences, 2020, 125(2).
[97] COLDREN G A, LANGLEY J A, FELLER I C, et al. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland[J]. Journal of Ecology, 2019, 107(1): 79-90.
[98] MACY A, OSLAND M J, CHERRY J A, et al. Changes in Ecosystem Nitrogen and Carbon Allocation with Black Mangrove (Avicennia germinans) Encroachment into Spartina alterniflora Salt Marsh[J]. Ecosystems, 2020.
[99] YANDO E S, OSLAND M J, WILLIS J M, et al. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools[J]. Journal of Ecology, 2016, 104(4): 1020-1031.
[100]HENRY K M, TWILLEY R R. Soil Development in a Coastal Louisiana Wetland during a Climate-Induced Vegetation Shift from Salt Marsh to Mangrove[J]. Journal of Coastal Research, 2013, 29(6): 1273-1283.
[101]MCKEE K L, VERVAEKE W C. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?[J]. Global Change Biology, 2018, 24(3): 1224-1238.
[102]HOWARD R J, FROM A S, KRAUSS K W, et al. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts[J]. Hydrobiologia, 2020, 847(4): 1087-1106.
[103]LOVELESS J B, SMEE D L. Changes in arthropod communities as black mangroves Avicennia germinans expand into Gulf of Mexico salt marshes[J]. Arthropod-Plant Interactions, 2019, 13(3): 465-475.
[104]WALKER J E, ANGELINI C, SAFAK I, et al. Effects of Changing Vegetation Composition on Community Structure, Ecosystem Functioning, and Predator-Prey Interactions at the Saltmarsh-Mangrove Ecotone[J]. Diversity-Basel, 2019, 11(11).
[105]MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine Coastal and Shelf Science, 2019, 222: 13-20.
[106]XIONG Y M, LIAO B W, WANG F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments[J]. Marine Pollution Bulletin, 2018, 131: 378-385.
[107]ZANG Z. Analysis of intrinsic value and estimating losses of ?blue carbon? in coastal wetlands: a case study of Yancheng, China[J]. Ecosystem Health and Sustainability, 2019, 5(1): 216-225.
[108]CUI X W, LIANG J, LU W Z, et al. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 249: 71-80.
[109]HUANG C M, YUAN C S, YANG W B, et al. Temporal variations of greenhouse gas emissions and carbon sequestration and stock from a tidal constructed mangrove wetland[J]. Marine Pollution Bulletin, 2019, 149.
[110]HE Z Y, PENG Y S, GUAN D S, et al. Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species[J]. Plant and Soil, 2018, 432(1-2): 425-436.
[111]CHENG C F, LI M, XUE Z S, et al. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492.
[112]WANG G, GUAN D S, XIAO L, et al. Ecosystem carbon storage affected by intertidal locations and climatic factors in three estuarine mangrove forests of South China[J]. Regional Environmental Change, 2019, 19(6): 1701-1712.
[113]CHEN J H, HUANG Y Y, CHEN G C, et al. Effects of simulated sea level rise on stocks and sources of soil organic carbon in Kandelia obovata mangrove forests[J]. Forest Ecology and Management, 2020, 460.
[114]ZHAO Q Q, BAI J H, LU Q Q, et al. Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: Implications on wetland restoration[J]. Physics and Chemistry of the Earth, 2017, 97: 12-18.
[115]赵泽阳,赵志忠,付博,等.海南岛北部地区红树林湿地土壤有机碳分布规律及影响因素[J].广东农业科学, 2018, 45(12): 49-55.
[116]WANG G, GUAN D S, XIAO L, et al. Changes in mangrove community structures affecting sediment carbon content in Yingluo Bay of South China[J]. Marine Pollution Bulletin, 2019, 149.
[117]YU C X, FENG J X, LIU K, et al. Changes of ecosystem carbon stock following the plantation of exotic mangrove Sonneratia apetala in Qi'ao Island, China[J]. Science of the Total Environment, 2020, 717.
[118]CHEN S Y, CHEN B, CHEN G C, et al. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata[J]. Science of the Total Environment, 2021, 752.
[119]FENG J X, CUI X W, ZHOU J, et al. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China[J]. Catena, 2019, 180: 1-7.
[120]WU M X, HE Z Y, FUNG S T, et al. Species choice in mangrove reforestation may influence the quantity and quality of long-term carbon sequestration and storage[J]. Science of the Total Environment, 2020, 714.
[121]LIU T, TAO Y C, LIU Y. Mangrove swamp expansion controlled by climate since 1988: a case study in the Nanliu River Estuary, Guangxi, Southwest China[J]. Acta Oceanologica Sinica, 2017, 36(12): 11-17.
[122]FENG Z Y, TAN G M, XIA J Q, et al. Dynamics of mangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017[J]. Journal of Hydrology, 2020, 591.
[123]SONG W M, FENG J X, KRAUSS K W, et al. Non-freezing cold event stresses can cause significant damage to mangrove seedlings: assessing the role of warming and nitrogen enrichment in a mesocosm study[J]. Environmental Research Communications, 2020, 2(3).
[124]LI D Y, XU Y H, LI Y H, et al. Sedimentary records of human activity and natural environmental evolution in sensitive ecosystems: A case study of a coral nature reserve in Dongshan Bay and a mangrove forest nature reserve in Zhangjiang River estuary, Southeast China[J]. Organic Geochemistry, 2018, 121: 22-35.
[125]YU C X, GUAN D S, GANG W, et al. Development of ecosystem carbon stock with the progression of a natural mangrove forest in Yingluo Bay, China[J]. Plant and Soil, 2021.
[126]LI S S, MENG X W, GE Z M, et al. Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, southern China[J]. Ocean & Coastal Management, 2015, 109: 1-8.
[127]LIU T, LIU S F, WU B, et al. Increase of organic carbon burial response to mangrove expansion in the Nanliu River estuary, South China Sea[J]. Progress in Earth and Planetary Science, 2020, 7(1).
[128]HU W J, WANG Y Y, DONG P, et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement[J]. Forest Ecology and Management, 2020, 478.
[129]MACREADIE P I, ANTON A, RAVEN J A, et al. The future of Blue Carbon science[J]. Nature Communications, 2019, 10.
[130]ALLISON M A, BIANCHI T S, MCKEE B A, et al. Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River[J]. Geophysical Research Letters, 2007, 34(1).
[131]GOñI M A, HEDGES J I. Lignin dimers: Structures, distribution, and potential geochemical applications[J]. Geochimica Et Cosmochimica Acta, 1992, 56(11): 4025-4043.
[132]HEDGES J I, ERTEL J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2): 174-178.
[133]HEDGES J I, CLARK W A, COME G L. Organic matter sources to the water column and surficial sediments of a marine bay[J]. Limnology and Oceanography, 1988, 33(5): 1116-1136.
[134]HEDGES J I, MANN D C. Characterization of Plant-Tissues by Their Lignin Oxidation-Products[J]. Geochimica Et Cosmochimica Acta, 1979, 43(11): 1803-1807.
[135]PRAHL F G, ERTEL J R, GONI M A, et al. Terrestrial organic carbon contributions to sediments on the Washington margin[J]. Geochimica Et Cosmochimica Acta, 1994, 58(14): 3035-3048.
[136]DITTMAR T, LARA R J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)[J]. Geochimica Et Cosmochimica Acta, 2001, 65(9): 1417-1428.
[137]ZHANG Y, PENG T, SU Y, et al. Spatial heterogeneity in fatty acid abundance and composition across surface sediments of Lake Taihu, Eastern China: Implications for the use of lipids in evaluating carbon cycling and burial in lake systems[J]. Catena, 2021, 201: 105225.
[138]BLAKE W H, FICKEN K J, TAYLOR P, et al. Tracing crop-specific sediment sources in agricultural catchments[J]. Geomorphology, 2012, 139-140: 322-329.
[139]NITTROUER C A, STERNBERG R W. The formation of sedimentary strata in an allochthonous shelf environment: The Washington continental shelf[J]. Marine Geology, 1981, 42(1): 201-232.
[140]REA DAVID K, JANECEK THOMAS R, STOUT LARRY N E, et al. Mass-Accumulation Rates of the Non-Authigenic Inorganic Crystalline (Eolian) Component of Deep-Sea Sediments from the Western Mid-Pacific Mountains, Deep Sea Drilling Project Site 463; Taux De Sedimentation Des Constituants Cristallins Mineraux Non Authigenes (Eoliens) Des Depots De Mer Profonde De La Chaine Medio-Pacifique Occidentale, Dsdp Site 463[J]. 1981.
[141]CHEN J, WANG D Q, LI Y J, et al. The Carbon Stock and Sequestration Rate in Tidal Flats From Coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11): 21.
[142]何映雪,林峰,陈敏,等.春季北部湾北部海域颗粒有机物的碳、氮同位素组成[J]. 厦门大学学报(自然科学版), 2014, 53(02): 246-251.
[143]ZHANG J, MENG X W, XIA P, et al. The potential of contribution of mangrove-derived organic matter in intertidal sediments as a proxy of mangrove development in the northern Beibu Gulf[J]. Acta Oceanologica Sinica, 2020, 39(12): 21-29.
[144]温远光,李治基,李信贤,等.广西植被类型及其分类系统[J].广西科学, 2014, 21(05): 484-513.
[145]ZHANG Y, KAISER K, LI L, et al. Sources, distributions, and early diagenesis of sedimentary organic matter in the Pearl River region of the South China Sea[J]. Marine Chemistry, 2014, 158: 39-48.
[146]KUZYK Z Z A, GOñI M A, STERN G A, et al. Sources, pathways and sinks of particulate organic matter in Hudson Bay: Evidence from lignin distributions[J]. Marine Chemistry, 2008, 112(3-4): 215-229.
[147]GOñI M A, YUNKER M B, MACDONALD R W, et al. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf[J]. Marine Chemistry, 2000, 71(1): 23-51.
[148]BALA KRISHNA PRASAD M, RAMANATHAN A L. Organic matter characterization in a tropical estuarine-mangrove ecosystem of India: Preliminary assessment by using stable isotopes and lignin phenols[J]. Estuarine, Coastal and Shelf Science, 2009, 84(4): 617-624.
[149]THEVENOT M, DIGNAC M-F, RUMPEL C. Fate of lignins in soils: A review[J]. Soil Biology and Biochemistry, 2010, 42(8): 1200-1211.
[150]ALONGI D M, RAMANATHAN A L, KANNAN L, et al. Influence of human-induced disturbance on benthic microbial metabolism in the Pichavaram mangroves, Vellar–Coleroon estuarine complex, India[J]. Marine Biology, 2005, 147(4): 1033-1044.
[151]KUMAR M, BOSKI T, LIMA-FILHO F P, et al. Biomarkers as indicators of sedimentary organic matter sources and early diagenetic transformation of pentacyclic triterpenoids in a tropical mangrove ecosystem[J]. Estuarine, Coastal and Shelf Science, 2019, 229.
[152]MOINGT M, LUCOTTE M, PAQUET S. Lignin biomarkers signatures of common plants and soils of Eastern Canada[J]. Biogeochemistry, 2016, 129(1): 133-148.
[153]SPIKER E C, HATCHER P G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis[J]. Organic Geochemistry, 1984, 5(4): 283-290.
[154]LI C, LI S-L, YUE F-J, et al. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model[J]. Science of the Total Environment, 2019, 646: 801-810.
[155]OLSEN J L, ROUZé P, VERHELST B, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea[J]. Nature, 2016, 530(7590): 331-335.
[156]ALONGI D M. Carbon Balance in Salt Marsh and Mangrove Ecosystems: A Global Synthesis[J]. Journal of Marine Science and Engineering, 2020, 8(10).
[157]LI X, YUAN H FAU - LI N, LI N FAU - SONG J, et al. Organic carbon source and burial during the past one hundred years in Jiaozhou Bay, North china[J]. 2008:1001-0742.
[158]BLAIR N E, ALLER R C. The fate of terrestrial organic carbon in the marine environment[J]. Ann Rev Mar Sci, 2012, 4: 401-423.
[159]MAYER L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica Et Cosmochimica Acta, 1994, 58(4): 1271-1284.
[160]KENNEDY H, BEGGINS J, DUARTE C M, et al. Seagrass sediments as a global carbon sink: Isotopic constraints[J]. Global Biogeochemical Cycles, 2010, 24(4).
[161]WANG Q, WEN Y, ZHAO B, et al. Coastal soil texture controls soil organic carbon distribution and storage of mangroves in China[J]. Catena, 2021, 207.
[162]YVON-DUROCHER G, JONES J I, TRIMMER M, et al. Warming alters the metabolic balance of ecosystems[J]. Philos Trans R Soc Lond B Biol Sci, 2010, 365(1549): 2117-2126.
[163]AOKI L R, MCGLATHERY K J, WIBERG P L, et al. Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks[J]. Frontiers in Marine Science, 2021, 7.
[164]ZHANG Y, MENG X, XIA P, et al. Response of Mangrove Development to Air Temperature Variation Over the Past 3000 Years in Qinzhou Bay, Tropical China[J]. Frontiers in Earth Science, 2021, 9.
[165]FREDERIKSE T, LANDERER F, CARON L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821): 393-397.
[166]DITTMAR T, HERTKORN N, KATTNER G, et al. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 2006, 20(1).
[167]REITHMAIER G M S, CHEN X, SANTOS I R, et al. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary[J]. Estuarine, Coastal and Shelf Science, 2021, 249.
[168]VON SCHUCKMANN K, LE TRAON P-Y, SMITH N, et al. Copernicus Marine Service Ocean State Report, Issue 5[J]. Journal of Operational Oceanography, 2021, 14(1): 1-185.
[169]SANTOS I R, BURDIGE D J, JENNERJAHN T C, et al. The renaissance of Odum's outwelling hypothesis in 'Blue Carbon' science[J]. Estuarine, Coastal and Shelf Science, 2021, 255.
[170]LUISETTI T, FERRINI S, GRILLI G, et al. Climate action requires new accounting guidance and governance frameworks to manage carbon in shelf seas[J]. Nature Communications, 2020, 11(1): 4599.
[171]SPIVAK A C, SANDERMAN J, BOWEN J L, et al. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems[J]. Nature Geoscience, 2019, 12(9): 685-692.
[172]SANDERS C J, SMOAK J M, WATERS M N, et al. Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise[J]. Marine Environmental Research, 2012, 77: 150-155.
[173]WANG F, LU X, SANDERS C J, et al. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States[J]. Nature Communications, 2019, 10(1): 5434.
[174]李必元.郁江南宁河段历年径流量变化特性研究[J].红水河, 2007(02): 72-75.
[175]QI X, WANG K, ZHANG C, et al. Effects of the implementation of ecological restoration policies on soil organic carbon storage in a discontinuous soil region[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2014, 64(2): 97-108.
[176]HU Y, FEST B J, SWEARER S E, et al. Fine-scale spatial variability in organic carbon in a temperate mangrove forest: Implications for estimating carbon stocks in blue carbon ecosystems[J]. Estuarine, Coastal and Shelf Science, 2021, 259.
[177]ROVAI A S, COELHO-JR C, DE ALMEIDA R, et al. Ecosystem-level carbon stocks and sequestration rates in mangroves in the Cananéia-Iguape lagoon estuarine system, southeastern Brazil[J]. Forest Ecology and Management, 2021, 479.
[178]PERERA K A R S, DE SILVA K H W L, AMARASINGHE M D. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka[J]. Global and Planetary Change, 2018, 161: 162-171.
[179]QI L, WU Y, CHEN S, et al. Evaluation of Abandoned Huanghe Delta as an Important Carbon Source for the Chinese Marginal Seas in Recent Decades[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC017125.
[180]ALONGI D M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation (Version 1)[J]. Sci, 2020, 2(3).
[181]王法明,唐剑武,叶思源,等.中国滨海湿地的蓝色碳汇功能及碳中和对策[J].中国科学院院刊, 2021, 36(03): 241-251.
[182]WANG F, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9).
[183]HANGGARA B B, MURDIYARSO D, GINTING Y R S, et al. Effects of diverse mangrove management practices on forest structure, carbon dynamics and sedimentation in North Sumatra, Indonesia[J]. Estuarine, Coastal and Shelf Science, 2021, 259.
[184]RAW J L, ADAMS J B, BORNMAN T G, et al. Vulnerability to sea-level rise and the potential for restoration to enhance blue carbon storage in salt marshes of an urban estuary[J]. Estuarine, Coastal and Shelf Science, 2021, 260.
修改评论