[1] 姚中原.我国海上风电发展现状研究[J].中国电力企业管理,2019(22):24-28.
[2] 孙一琳.全球海上风电市场现状与展望[J].风能,2020(09):40-43.
[3] 白旭.中国海上风电发展现状与展望[J].船舶工程,2021,43(10):12-15.
[4] 刘超,徐跃.后疫情时代我国海上风电发展对策探究[J].中外能源,2021,26(03):14-19.
[5] ZHOU L, LI Y, LIU F, et al. Investigation of dynamic characteristics of a monopile wind turbine based on sea test[J]. Ocean Engineering, 2019, 189(Oct.1):106308.1 -106308.17.
[6] LIN Z, PENG XH, SHU KC, et al. Structural health monitoring of offshore wind power structures based on genetic algorithm optimization and uncertain analytic hierarchy process[J]. Ocean Engineering, 218.
[7] KEFAL A, TESSLER A, OTERKUS E. An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwichstructures[J]. Composite Structures, 2017, 179(nov.):514 -540.
[8] BRINCKER R, VENTURA C E. Introduction to Operational Modal Analysis[M] . 2015.
[9] DEVRIENDT C, MAGALHÃES F, WEIJTJENS W, et al. Structural health monitoring of offshore wind turbines using automated operational modal analysis. Structural Health Monitoring. 2014;13(6):644 -659.
[10] LIU F, GAO S, HAN H, et al. Interference reduction of high-energy noise for modal parameter identification of offshore wind turbines based on iterative signal extraction[J]. Ocean Engineering, 2019, 183(JUL.1):372 -383.
[11] LIU F, GAO S, LIU D, et al. A signal decomposition method based on repeated extraction of maximum energy component for offshore structures[J]. MarineStructures, 2020, 72(1):102779.
[12] LIU F, GAO S, ZHE T A, et al. A new time -frequency analysis method based on single mode function decomposition for offshore wind turbines[J]. Marine Structures, 72.
[13] 董霄峰,练继建,王海军.海上风机结构振动监测试验与特性分析[J].天津大学学报:自然科学与工程技术版,2019, 52(2):9.
[14] KRAEMER P, FRIEDMANN H. Vibration-based structural health monitoring for offshore wind turbines - Experimental validation of stochastic subspace algorithms[J]. Wind & structures, 2015, 21(6 ):693-707.
[15] MOJTAHEDI A, HOKMABADY H, YAGHUBZADEH A, et al. An improved model reduction-modal based method for model updating and health monitoring of an offshore jacket-type platform[J]. Ocean Engineering, 2020, 209:107495.
[16] TESSLER A, SPANGLER J L. A Variational Principle for Reconstruction of ElasticDeformations in Shear Deformable Plates and Shells. 2003.
[17] TESSLER A, SPANGLER J. Inverse FEM for Full-Field Reconstruction of ElasticDeformations in Shear Deformable Plates and Shells[J]. 2003.
[18] GHERLONE M, CERRACCHIO P, MATTONE M, et al. Shape sensing of 3D frame structures using an inverse Finite Element Method[J]. International Journal of Solids & Structures, 2012, 49(22):3100 -3112.
[19] KEFAL A, ERKAN O, ALEXANDER T, et al. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensi ng and structural health monitoring [J],Engineering Science and Technology, 2016, 19(3),1299-1313.
[20] KEFAL A. An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures[J]. Ocean Engineering , 2019,188:106262-.
[21] PAPA U, RUSSO S, LAMBOGLIA A, et al. Health Structure Monitoring for the Design of an Innovative UAS fixed wing through Inverse Finite Element Method (iFEM)[J].Aerospace Science and Technology, 2017
[22] YONG Z, JING LD, HONG B, et al. Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM[J]. Sensors, 2018,18(8):2424-.
[23] Ml A, AKBCD E, EO A, et al. Structural health monitoring of an offshore wind turbine tower using iFEM methodology[J]. Ocean Engineering, 204.
[24] KEFAL A, ADNAN, OTERKUS E, et al. Displacement and stress monitoring of achemical tanker based on inverse finite element method[J] . Ocean Engineering, 2016.
[25] KEFAL A, OTERKUS E. Displacement and stress monitoring of a Panamaxcontainership using inverse finite element method[J]. Ocean Engineering, 2016,119(JUN.1):16-29.
[26] KEFAL, ADNAN, MAYANG, et al. Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology[J]. Ocean Engineering, 2018.
[27] AZAM S E, RAGEH A, LINZELL D. Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition[J]. Structural Control& Health Monitoring, 2019, 26(2):e2288.1-e2288.24.
[28] XBA B, TF A, CHEN S, et al. One-dimensional convolutional neural network for damage detection of jacket-type offshore platforms[J]. Ocean Engineering, 2020.
[29] ZIEGLER L, COSACK N, KOLIOS A, et al. Structural monitoring for lifetimeextension of offshore wind monopiles: Verif ication of strain-based load extrapolation algorithm[J]. Marine Structures, 2019, 66(JUL.):154-163.
[30] PASSON P, RASMUSSEN J H. Offshore Wind Turbine Foundation Design[D]. DTU Wind Energy PhD;2015;No.0044.
[31] PASSON P, BRANNER K. Load calculation methods for off shore wind turbinefoundations[J]. Ships & Offshore Structures, 2014, 9(4):433-449.
[32] MOYLAN P J. Stable inversion of linear systems[J]. IEEE Transactions on Automatic Control, 1977, 22(1):74-78.
[33] ALEXANDROS I, RASOUL S, WOUT W, et al. A modal decomposition andexpansion approach for prediction of dynamic responses on a monopile offshore wind turbine using a limited number of vibration sensors[J]. Mechanical Systems and Signal Processing, 2015, 68:84-104.
[34] ILIOPOULOS A, WEIJTJENS W, VAN HEMELRIJCK D, et al. Fatigue assessmentof offshore wind turbines on monopile foundations using multi -band modalexpansion[J]. Wind Energy, 2017, 20(8):1463-1479.
[35] NOPPE N, ILIOPOULOS A, WEIJTJENS W, et al. Full load estimation of an offshore wind turbine based on SCADA and accelerometer data[J]. Journal of PhysicsConference, 2016, 753:072025.
[36] GILLIJNS S, MOOR B D. Unbiased minimum-variance input and state estimation for linear discrete-time systems[J]. Automatica Oxford, 2007.
[37] GILLIJNS S, MOOR B D. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough[J]. Automatica Oxford, 2007.
[38] MAES K, SMYTH A W, ROECK G D, et al. Joint input-state estimation in structural dynamics[J]. Mechanical Systems and Signal Processing, 2016.
[39] MAES K, ILIOPOULOS A, WEIJTJENS W, et al. Dynamic strain estimation forfatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms[J]. Mechanical Systems & Signal Processing, 2016, 76-77(aug.):592-611.
[40] MAES K, NIMMEN K V, LOURENS E, et al. Verification of joint input-stateestimation for force identification by means of in situ measurements on a footbridge[J].Mechanical Systems & Signal Processing, 2016, 75(Jun.):245-260.
[41] MAES K, KARLSSON F, LOMBAERT G. Tracking of inputs, states and parameters of linear structural dynamic systems[J]. Mechanical Systems and Signal Processing,2019, 130:755-775.
[42] GHALEB F, ZAINAL A, RASSAM M, et al. Improved vehicle positioning algorithm using enhanced innovation-based adaptive Kalman filter[J]. Pervasive and Mobile Computing, 2017, 40:139-155.
[43] ZHENG B, FU P, LI B, et al. A Robust Adaptive Unscented Kalman Filter forNonlinear Estimation with Uncertain Noise Covariance[J]. Sensors, 2018, 18(3):808.
[44] ZHANG XH, WU ZB. Dual-Type Structural Response Reconstruction Based onMoving-Window Kalman Filter with Unknown Measurement Noise[J]. Journal ofAerospace Engineering,2019,32(4):04019029.104019029.14.
[45] 张笑华,吴志彪,吴圣斌,黄梅萍.基于移动窗卡尔曼滤波算法的结构响应重构[J].振动与冲击,2021,40(21):90-96.
[46] DESSI D. Load field reconstruction with a combined POD and integral splineapproximation technique[J]. Mechanical Systems & Signal Processing, 2014,46(2):442-467.
[47] LI K, LIU J, Han X, et al. A novel approach for distributed dynamic loadreconstruction by space-time domain decoupling[J]. Journal of Sound and Vibration,2015.
[48] LIU J, LI K. Sparse identification of time-space coupled distributed dynamic load[J].Mechanical Systems and Signal Processing, 2021, 148(2):107177.
[49] WANG L, LIU Y. An inverse method for distributed dynamic load identification of structures with interval uncertainties[J]. Advances in Engineering Software, 2019,131:77-89.
[50] FALTINSEN O M. Sea Loads on Ships and Offshore Structures[M]. NEW YORK NY CAMBRIDGE UNIVERSITY PRESS, 1990.
[51] 吴望一.流体力学[M].北京:北京大学出版社, 1982.
[52] 邱大洪. 波浪理论及其在工程上的应用[M].北京:高等教育出版社,1985.
[53] DEAN R G. Stream function representation of nonlinear ocean waves[J]. Journal of Geophysical Research, 1965, 70(18).
[54] FENTON J D. The numerical solution of steady water wave problems[J]. Computers & Geosciences, 1988, 14(3):357-368.
[55] DNV-RP-C205. Environmental Conditions and Environmental Loads [S]. Det Norske Veritas AS.
[56] DNV-OS-J101. Design of Offshore Wind Turbine Structures [S]. Det Norske Veritas AS.
[57] DNV-OS-C101. Design of Offshore Steel Structures, General (LRFD Method) [S]. Det Norske Veritas AS.
[58] International Electro Technical Commission. Wind turbine generator systems(IEC61400-1)[S]. British Electrotechnical Committee.
[59] ARANY L, BHATTACHARYA S, MACDONALD J, et al. Simplified critical mudline bending moment spectra of offshore wind turbine support structures[J]. Wind Energy,2015, 18(12).
[60] ARANY L, BHATTACHARYA S, MACDONALD J, et al. Design of monopiles foroffshore wind turbines in 10 steps[J]. Soil Dynamics & Ear thquake Engineering, 2017,92:126-152.
[61] 中华人民共和国交通运输部.港口工程载荷规范(JTS144-1-2010)[S].北京:人民交通出版社,2010.
[62] 中国船级社.海上风力发电机组认证规范[S].北京:人民交通出版社,2012.
[63] 刘延柱.振动力学[M].北京:高等教育出版社,2019.
[64] MATHEWS J H, FINK K K. Numerical Methods Using Matlab [M]. 2005.
[65] 张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
[66] 徐斌,高跃飞,余龙.Matlab有限元结构动力写分析与工程应用[M].北京:清华大学出版社,2009.
[67] 曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
[68] 宋文尧,张牙.卡尔曼滤波[M].科学出版社,1991.
[69] CHEN C T. Linear system theory and design[M]. Holt, Rinehart, and Winston, 1984.
[70] MAES K, LOURENS E, NIMMEN K V, et al. Design of sensor networks forinstantaneous inversion of modally reduced order models in structural dynamics[J].Mechanical Systems and Signal Processing, 2015.
[71] CUMBO R, MAZZANTI L, TAMAROZZI T, et al. Advanced optimal sensorplacement for Kalman-based multiple-input estimation[J]. Mechanical Systems and Signal Processing, 2021, 160(3):107830.
[72] 郭忠. 矩阵正定性的判定及线性方程组AX=b 的反问题求解[J]. 科学通报,1987(02):95-95.
[73] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5MWReference Wind Turbine for Offshore System Development[J]. office of scientific &technical information technical reports, 2009.
[74] JONKMAN J, MUSIAL W. Subtask 2 The Offshore Code Comparison Collaboration(OC3) IEA Wind Task 23 Offshore Wind Technology and Deployment[J]. Technical Report, 2010.
[75] DONG X, LIAN J, Wang H. Vibration source identification of offshore wind turbine structure based on optimized spectral kurtosis and ensemble empirical mode decomposition[J]. Ocean Engineering, 2019, 172(JAN.15):199 -212.
[76] HAECKELL M W, ROLFES R. Monitoring a 5 MW offshore wind energy converter—Condition parameters and triangulation based extraction of modal parameters[J].Mechanical Systems & Signal Processing, 2013, 40(1):322-343.
修改评论