[1] KATSNELSON M I. Graphene: carbon in two dimensions[J]. Materials Today, 2007, 10(1-2): 20-27.
[2] 傅强, 包信和. 石墨烯的化学研究进展[J]. 科学通报, 2009, 54(18): 2657-2666.
[3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[4] KIM P, ZHANG Y, TAN Y W, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[5] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126.
[6] CAO Y, PARK J M, WATANABE K, et al. Pauli-limit violation and re-entrant superconductivity in Moiré graphene[J]. Nature, 2021, 595(7868): 526-531.
[7] FERRARI A C, BONACCORSO F, FAL K V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4587-5062.
[8] XIA F, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907.
[9] NETO A H C, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.
[10] LI X, WANG X, ZHANG L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.
[11] BALOG R, JøRGENSEN B, NILSSON L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption[J]. Nature Materials, 2010, 9(4): 315-319.
[12] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
[13] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[14] LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 277-283.
[15] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805-136808.
[16] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120.
[17] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
[18] 张秀梅. 二维层状过渡金属硫属化合物的可控生长及特性研究[D]. 江南大学, 2018.
[19] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
[20] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[21] YANG J, WANG K, ZHU J, et al. Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31702-31708.
[22] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2(T = W, Nb, Re)[J]. Physical Review B, 2011, 83(24): 245213-245216.
[23] ZAFAR A, ZAFAR Z, ZHAO W, et al. Sulfur-mastery: precise synthesis of 2D transition metal dichalcogenides[J]. Advanced Functional Materials, 2019, 29(27): 1809261-1809268.
[24] LIU F. Mechanical exfoliation of large area 2D materials from vdW crystals[J]. Progress in Surface Science, 2021, 96(2): 100626-100642.
[25] YI M, SHEN Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715.
[26] PARADISANOS I, GERMANIS S, PELEKANOS N, et al. Room temperature observation of biexcitons in exfoliated WS2 monolayers[J]. Applied Physics Letters, 2017, 110(19): 193102-193207.
[27] ANTO JEFFERY A, NETHRAVATHI C, RAJAMATHI M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2(M = Mo, W)[J]. The Journal of Physical Chemistry C, 2014, 118(2): 1386-1396.
[28] UEBERRICKE L, COLEMAN J N, BACKES C. Robustness of size selection and spectroscopic size, thickness and monolayer metrics of liquid-exfoliated WS2[J]. Physica Status Solidi (b), 2017, 254(11): 1700443-1700451.
[29] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[30] XU T, LIU Y, PEI Y, et al. The Ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes[J]. Sensors and Actuators B: Chemical, 2018, 259: 789-796.
[31] SHI R, HE P, CAI X, et al. Oxide inhibitor-assisted growth of single-layer molybdenum dichalcogenides (MoX2, X = S, Se, Te) with controllable molybdenum release[J]. ACS Nano, 2020, 14(6): 7593-7601.
[32] WANG J, LUO Y, CAI X, et al. Multiple regulation over growth direction, band structure, and dimension of monolayer WS2 by a quartz substrate[J]. Chemistry of Materials, 2020, 32(6): 2508-2517.
[33] WANG J, HAN M, WANG Q, et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays[J]. ACS Nano, 2021, 15(4): 6633-6644.
[34] ZHOU J, LIN J, HUANG X, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359.
[35] KIM S Y, KWAK J, CIOBANU C V, et al. Recent developments in controlled vaporphase growth of 2D group 6 transition metal dichalcogenides[J]. Advanced Materials, 2019, 31(20): 1804939-1804977.
[36] CHEN W, ZHAO J, ZHANG J, et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2[J]. Journal of the American Chemical Society, 2015, 137(50): 15632-15635.
[37] COHEN A, PATSHA A, MOHAPATRA P K, et al. Growth-etch metal-organic chemical vapor deposition approach of WS2 atomic layers[J]. ACS Nano, 2020, 15(1): 526-538.
[38] KANG K, XIE S, HUANG L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660.
[39] XU J, HO D. Modulation of the reaction mechanism via S/Mo: a rational strategy for large-area MoS2 growth[J]. Chemistry of Materials, 2021, 33(9): 3249-3257.
[40] WANG S, RONG Y, FAN Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition[J]. Chemistry of Materials, 2014, 26(22): 6371-6379.
[41] LIM Y F, PRIYADARSHI K, BUSSOLOTTI F, et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier[J]. ACS Nano, 2018, 12(2): 1339-1349.
[42] LU Y, CHEN T, RYU G H, et al. Self-limiting growth of high-quality 2D monolayer MoS2 by direct sulfurization using precursor-soluble substrates for advanced fieldeffect transistors and photodetectors[J]. ACS Applied Nano Materials, 2019, 2(1): 369-378.
[43] YANG P, ZOU X, ZHANG Z, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass[J]. Nature Communications, 2018, 9(1): 979-988.
[44] CHEN Y, GAN L, LI H, et al. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2[J]. Advanced Materials 2017, 29(7): 1603550-1603556.
[45] YANG P, ZHANG Z, SUN M, et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics[J]. ACS Nano, 2019, 13(3): 3649-3658.
[46] LEE J, PAK S, GIRAUD P, et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices[J]. Advanced Materials, 2017, 29(33): 1702206-1702214.
[47] CHEN J, SHAO K, YANG W, et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19381-19387.
[48] LIU H, QI G, TANG C, et al. Growth of large-area homogeneous monolayer transitionmetal disulfides via a molten liquid intermediate process[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13174-13181.
[49] LI S, LIN Y C, LIU X Y, et al. Wafer-scale and deterministic patterned growth of monolayer MoS2 via vapor-liquid-solid method[J]. Nanoscale, 2019, 11(34): 16122- 16129.
[50] KIM M, SEO J, KIM J, et al. High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics[J]. ACS Nano, 2021, 15(2): 3038-3046.
[51] IONESCU R, CAMPBELL B, WU R, et al. Chelant enhanced solution processing for wafer scale synthesis of transition metal dichalcogenide thin films[J]. Scientific Reports, 2017, 7(1): 6419-6427.
[52] ZHANG Z, CHEN P, YANG X, et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2[J]. National Science Review, 2020, 7(4): 737-744.
[53] QIN B, MA H, HOSSAIN M, et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition[J]. Chemistry of Materials, 2020, 32(24):10321-10347.
[54] GAO Y, LIU Z, SUN D M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils[J]. Nature Communications, 2015, 6(1): 8569-8578.
[55] YUN S J, CHAE S H, KIM H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils[J]. ACS Nano, 2015, 9(5): 5510-5519.
[56] GAO Y, HONG Y L, YIN L C, et al. Ultrafast growth of high-quality monolayer WSe2 on Au[J]. Advanced Materials 2017, 29(29): 1700990-1700997.
[57] CHEN J, ZHAO X, TAN S J R, et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass[J]. Journal of the American Chemical Society, 2017, 139(3): 1073-1076.
[58] LAN C, KANG X, WEI R, et al. Utilizing a NaOH promoter to achieve large singledomain monolayer WS2 films via modified chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35238-35246.
[59] CHEN Y, SUN J, GAO J, et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture[J]. Advanced Materials, 2015, 27(47): 7839-7846.
[60] GAO Q, ZHANG Z, XU X, et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2[J]. Nature Communications, 2018, 9(1): 4778-4785.
[61] ZHANG Z, XU X, SONG J, et al. High-performance transistors based on monolayer CVD MoS2 grown on molten glass[J]. Applied Physics Letters, 2018, 113(20): 202103-202107.
[62] YANG P, ZHANG S, PAN S, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111)[J]. ACS Nano, 2020, 14(4): 5036-5045.
[63] ZHANG L, DONG J, DING F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis[J]. Chemical Reviews, 2021, 121(11): 6321-6372.
[64] CHEN L, LIU B, GE M, et al. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode[J]. ACS Nano, 2015, 9(8): 8368-8375.
[65] DUMCENCO D, OVCHINNIKOV D, MARINOV K, et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano, 2015, 9(4): 4611-4620.
[66] RUZMETOV D, ZHANG K, STAN G, et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride[J]. ACS Nano, 2016, 10(3): 3580-3588.
[67] MA Z, WANG S, DENG Q, et al. Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on two-fold symmetry a-plane sapphire[J]. Small 2020, 16(16): 2000596-2000604.
[68] ALJARB A, FU J H, HSU C C, et al. Ledge-directed epitaxy of continuously selfaligned single-crystalline nanoribbons of transition metal dichalcogenides[J]. Nature Materials, 2020, 19(12): 1300-1306.
[69] WANG J, XU X, CHENG T, et al. Dual-coupling-guided epitaxial growth of waferscale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 2021, 17(1): 33-38.
[70] PAN B, ZHANG K, DING C, et al. Universal precise growth of 2D transition-metal dichalcogenides in vertical direction[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35337-35344.
[71] JEON J, JANG S K, JEON S M, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films[J]. Nanoscale, 2015, 7(5): 1688-1695.
[72] ZHENG J, YAN X, LU Z, et al. High‐mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition[J]. Advanced Materials 2017, 29(13): 1604540-1604545.
[73] ZHANG X, NAN H, XIAO S, et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy[J]. Nature Communications, 2019, 10(1): 598-607.
[74] CHOUDHARY N, PARK J, HWANG J Y, et al. Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure[J]. Scientific Reports, 2016, 6(1): 25456-25462.
[75] XUE Y, ZHANG Y, LIU Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors[J]. ACS Nano, 2016, 10(1): 573-580.
[76] GONG Y, LIN J, WANG X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nature Materials, 2014, 13(12): 1135-1142.
[77] LEE J, PAK S, LEE Y W, et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures[J]. ACS Nano, 2019, 13(11): 13047-13055.
[78] ZHANG Z, CHEN P, DUAN X, et al. Robust epitaxial growth of two-dimensional heterostructures, multi-heterostructures, and superlattices[J]. Science, 2017, 357(6353): 788-792.
[79] 张秀梅, 肖少庆, 史丽弘, 等. 限制空间法制备大尺寸单层二硫化钨薄膜[J]. 人工晶体学报, 2018, 47(06): 1254-1260.
[80] GARCIA-SANCHEZ R F, AHMIDO T, CASIMIR D, et al. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials[J]. The Journal of Physical Chemistry A, 2013, 117(50): 13825-13831.
[81] KOBAYASHI Y, SASAKI S, MORI S, et al. Growth and optical properties of highquality monolayer WS2 on graphite[J]. ACS Nano, 2015, 9(4): 4056-4063.
[82] LI S, WANG S, TANG D M, et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals[J]. Applied Materials Today, 2015, 1(1): 60-66.
[83] ZHOU J, TANG B, LIN J, et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures[J]. Advanced Functional Materials, 2018, 28(31): 1801568-1801572.
[84] ZHU J, LI W, HUANG R, et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures[J]. Journal of the American Chemical Society, 2020, 142(38): 16276-16284.
修改评论