中文版 | English
题名

层状二硫化钨的可控制备和生长机制研究

姓名
姓名拼音
WANG Qun
学号
11930238
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
程春
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  半导体性的二维过渡金属硫族化合物(Two-Dimensional Transition Metal Dichalcogenides, 2D-TMDCs),如二硫化钨(WS2)、二硫化钼(MoS2)等,具有较高的理论载流子迁移率(~1103 cm-1 V-1 s-1)和较高的开关比(106-108),在新一代柔性电子中具有广阔的应用前景。然而,高质量2D-TMDCs薄膜的大面积可控制备依然存在较大困难,这严重制约了2D-TMDCs的工业化应用。化学气相沉积(Chemical Vapor Deposition, CVD)被认为是制备低缺陷、大面积2D-TMDCs薄膜的有效方法。然而,该方法制备的2D-TMDCs样品普遍存在单晶尺寸小、层数不可控、薄膜质量差和重复性不佳等问题。研究表明,这源于CVD反应难以精确调控前驱体中的元素浓度比,如硫:钨(S:W)比。

  据此,本论文以层状WS2的生长为研究对象,提出了一种新型的旋涂-限域策略来提升CVD反应中前驱体浓度的调控,用于可控制备大尺寸、高质量的WS2薄膜。主要研究内容和结果如下:用COMSOL Multiphysics软件模拟了限域空间中硫蒸汽随时间的动态分布。该模拟结果表明限域空间可以较长时间保持S:W ~ 2的优化比值,并促进WS2的面内生长。我们研究了限域空间、金属前驱体浓度、硫源位置等参数对WS2的形核密度、晶粒尺寸和层数的影响,进一步从实验上验证了旋涂-限域策略能够有效控制WS2的生长动力学,并实现了大尺寸的单层、双层WS2的可控制备。此外,我们成功制备了MoS2-WS2平面异质结并发现该材料相比单一组分的WS2MoS2具有更高效的电催化析氢性能。本论文工作加深了对CVD反应过程中WS2晶体生长动力学的理解,并为实现大单晶、层可控的WS2薄膜以及相关异质结的制备提供了简单有效的策略。

其他摘要

   Semiconductive two-dimensional transition metal dichalcogenides (2D-TMDCs), such as tungsten disulfide (WS2) and molybdenum disulfide (MoS2), have high theoretical carrier mobility (~1103 cm-1V-1 s-1) and high on/off ratio (106-108), which have broad application prospects in the next generation of flexible electrons. However, the controllable fabrication of high-quality and wafer-scale 2D-TMDCs films remain difficulties, which seriously restricts the industrial application of 2D-TMDCs. Chemical vapor deposition (CVD) is considered to be an effective method to prepare 2D-TMDCs thin films with low defect density and large-size. However, 2D-TMDCs samples prepared by CVD always suffer from small single crystal size, uncontrollable layer number, poor film quality and poor repeatability. Studies show that this is mainly due to the difficulty of CVD reaction in accurately regulating the element concentration ratio in the precursor (e.g. S:W ratio).

    In view of this, the growth of layered WS2 is taken as the research object, and a spin-coating confined space strategy is innovatively proposed in this work to improve the modulation of precursor concentration in CVD, which is applied in the controllable preparation of large-size and high-quality WS2 films. The main research content and conclusions are as follows. COMSOL Multiphysics is used to simulate the change of precursor vapor over time in spin-coating confined space CVD. The simulated results indicate that the optimal S:W ratio (~2) can be maintained in the confined space for a long time, which is beneficial to promote the in-plane growth of WS2. We continue to study the effects of confined space, concentration of metal precursor, location of S source and other reaction parameter on the nucleation density, domain size and layer number of WS2. We successfully achieve the controllable preparation of monolayer and bilayer WS2 with large domain size. In addition, we successfully prepare in-plane heterojunction of MoS2-WS2 and find it exhibits more efficient hydrogen evolution reaction performance than WS2 or MoS2. This work provides an in-depth understanding of the growth kinetics of 2D WS2 crystals during CVD reaction, and proposes a simple and effective strategy for the controllable growth of 2D-TMDCs with large single crystal, controllable layer number and in-plane heterostructure.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] KATSNELSON M I. Graphene: carbon in two dimensions[J]. Materials Today, 2007, 10(1-2): 20-27.
[2] 傅强, 包信和. 石墨烯的化学研究进展[J]. 科学通报, 2009, 54(18): 2657-2666.
[3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[4] KIM P, ZHANG Y, TAN Y W, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[5] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126.
[6] CAO Y, PARK J M, WATANABE K, et al. Pauli-limit violation and re-entrant superconductivity in Moiré graphene[J]. Nature, 2021, 595(7868): 526-531.
[7] FERRARI A C, BONACCORSO F, FAL K V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4587-5062.
[8] XIA F, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907.
[9] NETO A H C, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.
[10] LI X, WANG X, ZHANG L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.
[11] BALOG R, JøRGENSEN B, NILSSON L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption[J]. Nature Materials, 2010, 9(4): 315-319.
[12] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
[13] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[14] LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 277-283.
[15] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805-136808.
[16] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120.
[17] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
[18] 张秀梅. 二维层状过渡金属硫属化合物的可控生长及特性研究[D]. 江南大学, 2018.
[19] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
[20] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[21] YANG J, WANG K, ZHU J, et al. Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31702-31708.
[22] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2(T = W, Nb, Re)[J]. Physical Review B, 2011, 83(24): 245213-245216.
[23] ZAFAR A, ZAFAR Z, ZHAO W, et al. Sulfur-mastery: precise synthesis of 2D transition metal dichalcogenides[J]. Advanced Functional Materials, 2019, 29(27): 1809261-1809268.
[24] LIU F. Mechanical exfoliation of large area 2D materials from vdW crystals[J]. Progress in Surface Science, 2021, 96(2): 100626-100642.
[25] YI M, SHEN Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715.
[26] PARADISANOS I, GERMANIS S, PELEKANOS N, et al. Room temperature observation of biexcitons in exfoliated WS2 monolayers[J]. Applied Physics Letters, 2017, 110(19): 193102-193207.
[27] ANTO JEFFERY A, NETHRAVATHI C, RAJAMATHI M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2(M = Mo, W)[J]. The Journal of Physical Chemistry C, 2014, 118(2): 1386-1396.
[28] UEBERRICKE L, COLEMAN J N, BACKES C. Robustness of size selection and spectroscopic size, thickness and monolayer metrics of liquid-exfoliated WS2[J]. Physica Status Solidi (b), 2017, 254(11): 1700443-1700451.
[29] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[30] XU T, LIU Y, PEI Y, et al. The Ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes[J]. Sensors and Actuators B: Chemical, 2018, 259: 789-796.
[31] SHI R, HE P, CAI X, et al. Oxide inhibitor-assisted growth of single-layer molybdenum dichalcogenides (MoX2, X = S, Se, Te) with controllable molybdenum release[J]. ACS Nano, 2020, 14(6): 7593-7601.
[32] WANG J, LUO Y, CAI X, et al. Multiple regulation over growth direction, band structure, and dimension of monolayer WS2 by a quartz substrate[J]. Chemistry of Materials, 2020, 32(6): 2508-2517.
[33] WANG J, HAN M, WANG Q, et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays[J]. ACS Nano, 2021, 15(4): 6633-6644.
[34] ZHOU J, LIN J, HUANG X, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359.
[35] KIM S Y, KWAK J, CIOBANU C V, et al. Recent developments in controlled vaporphase growth of 2D group 6 transition metal dichalcogenides[J]. Advanced Materials, 2019, 31(20): 1804939-1804977.
[36] CHEN W, ZHAO J, ZHANG J, et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2[J]. Journal of the American Chemical Society, 2015, 137(50): 15632-15635.
[37] COHEN A, PATSHA A, MOHAPATRA P K, et al. Growth-etch metal-organic chemical vapor deposition approach of WS2 atomic layers[J]. ACS Nano, 2020, 15(1): 526-538.
[38] KANG K, XIE S, HUANG L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660.
[39] XU J, HO D. Modulation of the reaction mechanism via S/Mo: a rational strategy for large-area MoS2 growth[J]. Chemistry of Materials, 2021, 33(9): 3249-3257.
[40] WANG S, RONG Y, FAN Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition[J]. Chemistry of Materials, 2014, 26(22): 6371-6379.
[41] LIM Y F, PRIYADARSHI K, BUSSOLOTTI F, et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier[J]. ACS Nano, 2018, 12(2): 1339-1349.
[42] LU Y, CHEN T, RYU G H, et al. Self-limiting growth of high-quality 2D monolayer MoS2 by direct sulfurization using precursor-soluble substrates for advanced fieldeffect transistors and photodetectors[J]. ACS Applied Nano Materials, 2019, 2(1): 369-378.
[43] YANG P, ZOU X, ZHANG Z, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass[J]. Nature Communications, 2018, 9(1): 979-988.
[44] CHEN Y, GAN L, LI H, et al. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2[J]. Advanced Materials 2017, 29(7): 1603550-1603556.
[45] YANG P, ZHANG Z, SUN M, et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics[J]. ACS Nano, 2019, 13(3): 3649-3658.
[46] LEE J, PAK S, GIRAUD P, et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices[J]. Advanced Materials, 2017, 29(33): 1702206-1702214.
[47] CHEN J, SHAO K, YANG W, et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19381-19387.
[48] LIU H, QI G, TANG C, et al. Growth of large-area homogeneous monolayer transitionmetal disulfides via a molten liquid intermediate process[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13174-13181.
[49] LI S, LIN Y C, LIU X Y, et al. Wafer-scale and deterministic patterned growth of monolayer MoS2 via vapor-liquid-solid method[J]. Nanoscale, 2019, 11(34): 16122- 16129.
[50] KIM M, SEO J, KIM J, et al. High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics[J]. ACS Nano, 2021, 15(2): 3038-3046.
[51] IONESCU R, CAMPBELL B, WU R, et al. Chelant enhanced solution processing for wafer scale synthesis of transition metal dichalcogenide thin films[J]. Scientific Reports, 2017, 7(1): 6419-6427.
[52] ZHANG Z, CHEN P, YANG X, et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2[J]. National Science Review, 2020, 7(4): 737-744.
[53] QIN B, MA H, HOSSAIN M, et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition[J]. Chemistry of Materials, 2020, 32(24):10321-10347.
[54] GAO Y, LIU Z, SUN D M, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils[J]. Nature Communications, 2015, 6(1): 8569-8578.
[55] YUN S J, CHAE S H, KIM H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils[J]. ACS Nano, 2015, 9(5): 5510-5519.
[56] GAO Y, HONG Y L, YIN L C, et al. Ultrafast growth of high-quality monolayer WSe2 on Au[J]. Advanced Materials 2017, 29(29): 1700990-1700997.
[57] CHEN J, ZHAO X, TAN S J R, et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass[J]. Journal of the American Chemical Society, 2017, 139(3): 1073-1076.
[58] LAN C, KANG X, WEI R, et al. Utilizing a NaOH promoter to achieve large singledomain monolayer WS2 films via modified chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35238-35246.
[59] CHEN Y, SUN J, GAO J, et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture[J]. Advanced Materials, 2015, 27(47): 7839-7846.
[60] GAO Q, ZHANG Z, XU X, et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2[J]. Nature Communications, 2018, 9(1): 4778-4785.
[61] ZHANG Z, XU X, SONG J, et al. High-performance transistors based on monolayer CVD MoS2 grown on molten glass[J]. Applied Physics Letters, 2018, 113(20): 202103-202107.
[62] YANG P, ZHANG S, PAN S, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111)[J]. ACS Nano, 2020, 14(4): 5036-5045.
[63] ZHANG L, DONG J, DING F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis[J]. Chemical Reviews, 2021, 121(11): 6321-6372.
[64] CHEN L, LIU B, GE M, et al. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode[J]. ACS Nano, 2015, 9(8): 8368-8375.
[65] DUMCENCO D, OVCHINNIKOV D, MARINOV K, et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano, 2015, 9(4): 4611-4620.
[66] RUZMETOV D, ZHANG K, STAN G, et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride[J]. ACS Nano, 2016, 10(3): 3580-3588.
[67] MA Z, WANG S, DENG Q, et al. Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on two-fold symmetry a-plane sapphire[J]. Small 2020, 16(16): 2000596-2000604.
[68] ALJARB A, FU J H, HSU C C, et al. Ledge-directed epitaxy of continuously selfaligned single-crystalline nanoribbons of transition metal dichalcogenides[J]. Nature Materials, 2020, 19(12): 1300-1306.
[69] WANG J, XU X, CHENG T, et al. Dual-coupling-guided epitaxial growth of waferscale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 2021, 17(1): 33-38.
[70] PAN B, ZHANG K, DING C, et al. Universal precise growth of 2D transition-metal dichalcogenides in vertical direction[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35337-35344.
[71] JEON J, JANG S K, JEON S M, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films[J]. Nanoscale, 2015, 7(5): 1688-1695.
[72] ZHENG J, YAN X, LU Z, et al. High‐mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition[J]. Advanced Materials 2017, 29(13): 1604540-1604545.
[73] ZHANG X, NAN H, XIAO S, et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy[J]. Nature Communications, 2019, 10(1): 598-607.
[74] CHOUDHARY N, PARK J, HWANG J Y, et al. Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure[J]. Scientific Reports, 2016, 6(1): 25456-25462.
[75] XUE Y, ZHANG Y, LIU Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors[J]. ACS Nano, 2016, 10(1): 573-580.
[76] GONG Y, LIN J, WANG X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nature Materials, 2014, 13(12): 1135-1142.
[77] LEE J, PAK S, LEE Y W, et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures[J]. ACS Nano, 2019, 13(11): 13047-13055.
[78] ZHANG Z, CHEN P, DUAN X, et al. Robust epitaxial growth of two-dimensional heterostructures, multi-heterostructures, and superlattices[J]. Science, 2017, 357(6353): 788-792.
[79] 张秀梅, 肖少庆, 史丽弘, 等. 限制空间法制备大尺寸单层二硫化钨薄膜[J]. 人工晶体学报, 2018, 47(06): 1254-1260.
[80] GARCIA-SANCHEZ R F, AHMIDO T, CASIMIR D, et al. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials[J]. The Journal of Physical Chemistry A, 2013, 117(50): 13825-13831.
[81] KOBAYASHI Y, SASAKI S, MORI S, et al. Growth and optical properties of highquality monolayer WS2 on graphite[J]. ACS Nano, 2015, 9(4): 4056-4063.
[82] LI S, WANG S, TANG D M, et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals[J]. Applied Materials Today, 2015, 1(1): 60-66.
[83] ZHOU J, TANG B, LIN J, et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures[J]. Advanced Functional Materials, 2018, 28(31): 1801568-1801572.
[84] ZHU J, LI W, HUANG R, et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures[J]. Journal of the American Chemical Society, 2020, 142(38): 16276-16284.

所在学位评定分委会
材料科学与工程系
国内图书分类号
O782.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335710
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
王群. 层状二硫化钨的可控制备和生长机制研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930238-王群-材料科学与工程系(11979KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王群]的文章
百度学术
百度学术中相似的文章
[王群]的文章
必应学术
必应学术中相似的文章
[王群]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。