中文版 | English
题名

利用SS前驱波研究南海及周缘地区的上地幔不连续面结构

其他题名
INVESTIGATION OF UPPER MANTLE DISCONTINUITY STRUCTURE BENEATH THE SOUTH CHINA SEA AND ITS PERIPHERY USING SS PRECURSORS
姓名
姓名拼音
SHANG Zhengtao
学号
11930408
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
杨挺
导师单位
海洋科学与工程系
论文答辩日期
2022-05-07
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

南海及其周缘地区具有复杂的地质构造和地球动力学特征,例如,海南岛及其附近被观测到有地幔热柱的存在;南海周缘存在多个俯冲带,且整个区域下方存在多个古俯冲板片。这对回答南海及周缘地区的热点是源于热柱还是源于俯冲系统以及热柱起源深度等一系列科学问题提出了挑战。而上地幔不连续面携带着重要的地幔热结构和动力学信息,因此获得其精细结构对于南海及周缘地区构造演化的研究具有重要的意义。鉴于南海海盆缺少地震台站的分布,采用接收函数和三叠波等方法研究地幔精细结构困难重重,因此我们采用SS前驱波的方法。通过收集全球的地震和台站,SS地表反射点在研究区域实现了较高密度的覆盖,因此可以很好地探测到南海及周缘地区下方的地幔热结构。

我们收集了震中距在100-165°、震级大于5.5Mw和震源深度小于75公里的SS反射点位于研究区域的地震记录,并进行人工挑选最终得到了包含10853个高信噪比地震波形的SS地震数据集。我们将研究区域划分为169个间隔为2.5°,半径为的面元.对每个面元内的地震波形进行了预处理、走时校正和动校正等相关工作,并通过线性叠加得到了SS前驱波的精确到时,然后通过时深转换方法得到了研究区域内上地幔不连续面的起伏和地幔转换带(MTZ)厚度的横向变化。

我们的结果显示,在海南岛及其周缘下方410公里不连续面(d410)和660公里不连续面(d660)均出现下沉,但下沉更为明显的d410导致MTZ减薄约10公里,我们推测该区域下方存在起源下地幔的地幔热柱,d660的形成受到后石榴石相变的控制。在婆罗洲西北部地区、南海北部及菲律宾北部地区、印支半岛地区和苏禄海西北部的下方MTZ出现增厚,为这些区域下方存在俯冲板片提供了直接的证据,并且推断引起MTZ增厚的相应俯冲板片分别是南向古南海俯冲板片、北向古南海板片、印度板片和菲律宾板片。在南海北侧和印支半岛东侧,我们观测到MTZ减薄和火山活动的发生,结合SS前驱波振幅信息,我们推断这可能是由北向古南海板片和印度板片在其边缘促进了地幔上涌导致。该地幔上升流携带了这两个板片脱离的水分和其他分离的板片物质。此外,在菲律宾南部地区观测到MTZ出现微弱减薄的现象,我们推断可能是由菲律宾板片携带了一层薄的较热的软流圈物质下沉并在其下方产生了地幔上涌导致的。

我们的观测结果还显示在台湾岛及其东北部地区、南海北部地区和印支半岛东北方向与中国大陆的交界地区下方有X不连续面的存在,通常认为其形成与有含有二氧化硅的榴辉岩中的柯石英到斯石英的相变有关。对于榴辉岩在上地幔的富集,我们推测台湾岛及其东北部是由携带古洋壳物质的菲律宾板片的俯冲所导致的,后两个区域则是俯冲板片诱导产生的地幔上涌携带了下沉至深部的古洋壳物质上升所导致的。

其他摘要

The South China Sea (SCS) and its periphery have complex geological structures and geodynamics characteristics. For example, the existence of mantle plumes has been observed beneath Hainan Island and its vicinity, and there are subduction zones around the SCS, and there are many proto subducted slabs beneath the whole region. These characteristics pose a major challenge to addressing a series of scientific questions, such as whether the hot spots in the SCS and its periphery originate from the mantle plume or the subducted slab and where the origin depth is for the Hainan mantle plume. The upper mantle discontinuities carry significant thermal and dynamic information, so obtaining the fine structure of these discontinuities is of great significance for studying the tectonic evolution of the SCS and its periphery. Given the lack of seismic stations in the SCS basins, it is difficult to detected the fine structure of upper mantle discontinuities using the methods of receiver function and Triplicated waves, so we adopt SS precursor method. Through collecting the global earthquakes and stations, the SS bounced points realize high-density coverage in our research region, ensuring that the mantle thermal structure beneath the SCS and its periphery can be well detected.

We have collected seismic records with SS bounced points located in the research region. Their epicentral distances are between 100° and 165°, magnitudes are greater than 5.5 Mw, and focal depths are less than 75 km. Then, we obtain the high-quality SS seismic data set including 10853 seismic waveforms through manual selection. The research region is divided into 169 bins with an interval of 2.5° and a radius of 5°. Preprocessing, travel time correction and move-out correction are carried out for the seismic waveforms in each bin. The exact arrival time of SS precursor is obtained using a linear stack. Then, the topography of upper mantle discontinuity and the lateral variation of mantle transition zone (MTZ) thickness in our research region are obtained using time-to-depth conversion.

Our results show that the 410 km discontinuity (d410) and 660 km discontinuity (d660) both have a subsidence beneath Hainan Island and its periphery, and the more obvious subsidence of the d410 resulted in the thinning of MTZ by about 10 km. We speculate that a mantle plume originates from the lower mantle beneath this region, and the post garnet phase transition controls the formation of the d660. The thickening of MTZ is observed beneath the northwestern Borneo, the northern SCS, the northern Philippines, the Indochina region and the northwestern Sulu Sea region, which provides direct evidence for the existence of subducted slabs. it is inferred that the corresponding slabs causing MTZ thickening beneath these regions are southward proto SCS sea slab, northward proto SCS sea slab, Indian slab and Philippine slab, respectively. The thinning of MTZ and volcanic activities are observed in the north side of the SCS and the east side of Indochina, combined with the amplitude information of the SS precursors, it is inferred that this might be caused by the mantle upwelling induced by the northward proto-SCS slab and the Indian slab respectively. The mantle upwelling carries the water dehydrated from these two slabs and other separated slab materials. In addition, a weak weakening of MTZ was observed beneath the southern Philippines, which might be caused by the mantle upwelling beneath the Philippine slab. This mantle upwelling was induced by the Philippine slab, because it might carry a thin layer of hot asthenosphere material and sink deep into the lower mantle.

Our observations also show that there exist X discontinuities beneath Taiwan Island and its northeast side, the north side of SCS and the border region between the northeastern Indochina and the Chinese mainland, the formation of which is related to the phase transformation of coesite to stishovite in eclogitic materials within the oceanic crust. For the eclogite enrichment in the upper mantle, we speculate that the former was caused by the subduction of the Philippine slab carrying the paleo-oceanic material, the latter two are caused by the mantle upwelling induced by the subducted slab, which carries the paleo-oceanic crust material sinking to the deep mantle.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine[J]. Geology, 1982, 10(12):611.
[2] PELTZER G, TAPPONNIER P. Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision: An Experimental Approach[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B12):15085–15117.
[3] WU J, SUPPE J, LU R, et al. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6):4670–4741.
[4] WU J, SUPPE J. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography[J]. Journal of Earth Science, 2018, 29(6):1304–1318.
[5] SUN W. Initiation and Evolution of the South China Sea: An Overview[J]. Acta Geochimica, 2016, 35(3):215–225.
[6] YAN Q, SHI X, CASTILLO P R. The Late Mesozoic–Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective[J]. Journal of Asian Earth Sciences, 2014, 85:178–201.
[7] ZHOU H, XIAO L, DONG Y, et al. Geochemical and Geochronological Study of the Sanshui Basin Bimodal Volcanic Rock Suite, China: Implications for Basin Dynamics in Southeastern China[J]. Journal of Asian Earth Sciences, 2009, 34(2):178–189.
[8] ZHANG G-L, LUO Q, ZHAO J, et al. Geochemical Nature of Sub-Ridge Mantle and Opening Dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489:145–155.
[9] YU M, YAN Y, HUANG C-Y, et al. Opening of the South China Sea and Upwelling of the Hainan Plume[J]. Geophysical Research Letters, 2018, 45(6):2600–2609.
[10] STERN R J, LIN P-N, MORRIS J D, et al. Enriched Back-Arc Basin Basalts from the Northern Mariana Trough: Implications for the Magmatic Evolution of Back-Arc Basins[J]. Earth and Planetary Science Letters, 1990, 100(1–3):210–225.
[11] HAWKINS J W, LONSDALE P F, MACDOUGALL J D, et al. Petrology of the Axial Ridge of the Mariana Trough Backarc Spreading Center[J]. Earth and Planetary Science Letters, 1990, 100(1–3):226–250.
[12] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4):6299–6328.
[13] HSU S-K, YEH Y, DOO W-B, et al. New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and Their Tectonic Implications[J]. Marine Geophysical Researches, 2004, 25(1–2):29–44.
[14] ARGUS D F, GORDON R G, DEMETS C. Geologically Current Motion of 56 Plates Relative to the No-Net-Rotation Reference Frame[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(11):n/a.
[15] LI C-F, XU X, LIN J, et al. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12):4958–4983.
[16] SUN Z, LIN J, QIU N, et al. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin[J]. National Science Review, 2019, 6(5):871–876.
[17] 汪品先. 追踪边缘海的生命史:“南海深部计划”的科学目标[J]. Chinese Science Bulletin, 2012, 57(20):1807–1826.
[18] XIA S, ZHAO D, SUN J, et al. Teleseismic Imaging of the Mantle beneath Southernmost China: New Insights into the Hainan Plume[J]. Gondwana Research, 2016, 36:46–56.
[19] LIN J, XU Y, SUN Z, et al. Mantle Upwelling beneath the South China Sea and Links to Surrounding Subduction Systems[J]. National Science Review, 2019, 6(5):877–881.
[20] ZHANG N, LI Z-X. Formation of Mantle “Lone Plumes” in the Global Downwelling Zone — A Multiscale Modelling of Subduction-Controlled Plume Generation beneath the South China Sea[J]. Tectonophysics, 2018, 723:1–13.
[21] YAN Q, SHI X, METCALFE I, et al. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia[J]. Scientific Reports, 2018, 8(1):2640.
[22] ZHANG G-L, CHEN L-H, JACKSON M G, et al. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea[J]. Nature Geoscience, 2017, 10(3):229–235.
[23] LI C, VAN DER HILST R D, ENGDAHL E R, et al. A New Global Model for P Wave Speed Variations in Earth’s Mantle[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):Q05018-n/a.
[24] FACCENNA C, BECKER T W, LALLEMAND S, et al. Subduction-Triggered Magmatic Pulses: A New Class of Plumes?[J]. Earth and Planetary Science Letters, 2010, 299(1–2):54–68.
[25] YU Y, GAO S S, LIU K H, et al. Mantle Transition Zone Discontinuities beneath the Indochina Peninsula: Implications for Slab Subduction and Mantle Upwelling[J]. Geophysical Research Letters, 2017, 44(14):7159–7167.
[26] YU Y, XU Z, GAO S S, et al. Layered Mantle Heterogeneities Associated with Post-Subducted Slab Segments[J]. Earth and Planetary Science Letters, 2021, 571:117115.
[27] CHEN L, FACCENDA M. Subduction‐Induced Upwelling of a Hydrous Transition Zone: Implications for the Cenozoic Magmatism in Northeast China[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11):11489–11504.
[28] YANG J, FACCENDA M. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone[J]. Nature, 2020, 579(7797):88–91.
[29] DOKHT R M H, GU Y J, SACCHI M D. Migration Imaging of the Java Subduction Zones[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2):1540–1558.
[30] OBAYASHI M, SUGIOKA H, YOSHIMITSU J, et al. High Temperature Anomalies Oceanward of Subducting Slabs at the 410-Km Discontinuity[J]. Earth and Planetary Science Letters, 2006, 243(1–2):149–158.
[31] WANG T, CHEN L. Distinct Velocity Variations around the Base of the Upper Mantle beneath Northeast Asia[J]. Physics of the Earth and Planetary Interiors, 2009, 172(3–4):241–256.
[32] LEBEDEV S, NOLET G. Upper Mantle beneath Southeast Asia from S Velocity Tomography[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1):2048-n/a.
[33] LEI J, XIE F, FAN Q, et al. Seismic Imaging of the Deep Structure under the Chinese Volcanoes: An Overview[J]. Physics of the Earth and Planetary Interiors, 2013, 224:104–123.
[34] LIU H, CHEN F, LENG W, et al. Crustal Footprint of the Hainan Plume Beneath Southeast China[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4):3065–3079.
[35] WANG X-C, LI Z-X, LI X-H, et al. Identification of an Ancient Mantle Reservoir and Young Recycled Materials in the Source Region of a Young Mantle Plume: Implications for Potential Linkages between Plume and Plate Tectonics[J]. Earth and Planetary Science Letters, 2013, 377–378:248–259.
[36] ZOU H, FAN Q. U–Th Isotopes in Hainan Basalts: Implications for Sub-Asthenospheric Origin of EM2 Mantle Endmember and the Dynamics of Melting beneath Hainan Island[J]. Lithos, 2010, 116(1–2):145–152.
[37] ZHOU D, SUN Z, CHEN H, et al. Mesozoic Paleogeography and Tectonic Evolution of South China Sea and Adjacent Areas in the Context of Tethyan and Paleo-Pacific Interconnections[J]. Island Arc, 2008, 17(2):186–207.
[38] LI C, VAN DER HILST R D. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography[J]. Journal of Geophysical Research, 2010, 115(B7):n/a.
[39] KATSURA T, ITO E. The System Mg2SiO4–Fe2SiO4 at High Pressures and Temperatures: Precise Determination of Stabilities of Olivine, Modified Spinel, and Spinel[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11):15663–15670.
[40] RIGDEN S M, GWANMESIA G D, GERALD J D F, et al. Spinel Elasticity and Seismic Structure of the Transition Zone of the Mantle[J]. Nature, 1991, 354(6349):143–145.
[41] ITO E, TAKAHASHI E. Postspinel Transformations in the System Mg 2 SiO 4 -Fe 2 SiO 4 and Some Geophysical Implications[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8):10637–10646.
[42] BINA C R, HELFFRICH G. Phase Transition Clapeyron Slopes and Transition Zone Seismic Discontinuity Topography[J]. Journal of Geophysical Research, 1994, 99(B8):15853.
[43] HIROSE K. Phase Transitions in Pyrolitic Mantle around 670-Km Depth: Implications for Upwelling of Plumes from the Lower Mantle[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4):ECV 3-1-ECV 3-13.
[44] DEUSS A. Seismic Observations of Transition-Zone Discontinuities beneath Hotspot Locations[M]//Special Paper 430: Plates, Plumes and Planetary Processes. Geological Society of America, 2007: 121–136.
[45] SCHMERR N, KELLY B, THORNE M. Broadband Array Observations of the 300 Km Seismic Discontinuity[J]. Geophysical Research Letters, 2013, 40(5):841–846.
[46] XU F, VIDALE J, EARLE P, et al. Mantle Discontinuities under Southern Africa from Precursors to P’P’df[J]. Geophysical Research Letters - GEOPHYS RES LETT, 1998, 25(4):571–574.
[47] REVENAUGH J, JORDAN T. Mantle Layering from ScS Reverberations: 3. The Upper Mantle.[J]. Journal of Geophysical Research, 1991, 96(B12):19781–19810.
[48] SHEN X, YUAN X, LI X. A Ubiquitous Low Velocity Layer at the Base of the Mantle Transition Zone[J]. Geophysical Research Letters, 2014, 41(3):836–842.
[49] ZHANG Z, LAY T. Investigation of Upper Mantle Discontinuities Near Northwestern Pacific Subduction Zones Using Precursors to SSH[J]. Journal of Geophysical Research, 1993, 98(B3):4389–4405.
[50] CUI Q, WENLAN L, GUOHUI L, et al. Seismic Detection of the X-Discontinuity beneath the Ryukyu Subduction Zone from the SdP Conversion Phase[J]. Earth and Planetary Physics, 2018, 2(3):208–219.
[51] CHU R, HELMBERGER D, GURNIS M. Upper Mantle Surprises Derived from the Recent Virginia Earthquake Waveform Data[J]. Earth and Planetary Science Letters, 2014, 402(C):167–175.
[52] CONNOLLY J A D, KERRICK D M. Metamorphic Controls on Seismic Velocity of Subducted Oceanic Crust at 100–250 Km Depth[J]. Earth and Planetary Science Letters, 2002, 204(1–2):61–74.
[53] WILLIAMS Q, REVENAUGH J. Ancient Subduction, Mantle Eclogite, and the 300 Km Seismic Discontinuity[J]. Geology, 2005, 33(1):1–4.
[54] BAGLEY B, COURTIER A, REVENAUGH J. Melting in the Deep Upper Mantle Oceanward of the Honshu Slab[J]. Physics of the Earth and Planetary Interiors, 2009, 175(3):137–144.
[55] LI A, FISCHER K, LEE S, et al. Crust and Upper Mantle Discontinuity Structure beneath Eastern North America[J]. Journal of Geophysical Research, 2002, 107(15):ESE 7-1-ESE 7-12.
[56] JACOBSEN S D, LIU Z, BALLARAN T B, et al. Effect of H2O on Upper Mantle Phase Transitions in MgSiO3: Is the Depth of the Seismic X-Discontinuity an Indicator of Mantle Water Content?[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1–2):234–244.
[57] RICARD Y, MATTERN E, MATAS J. Synthetic Tomographic Images of Slabs from Mineral Physics[M]. VAN DER HILST R D, BASS J D, MATAS J, et al., eds.//Geophysical Monograph Series. Washington, D. C.: American Geophysical Union, 2005: 283–300.
[58] SHEN Y, SOLOMON S C, BJARNASON I Th, et al. Seismic Evidence for a Lower-Mantle Origin of the Iceland Plume[J]. Nature, 1998, 395(6697):62–65.
[59] HUANG H, TOSI N, CHANG S-J, et al. Receiver Function Imaging of the Mantle Transition Zone beneath the South China Block[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(10):3666–3678.
[60] WEI S S, CHEN Y J. Seismic Evidence of the Hainan Mantle Plume by Receiver Function Analysis in Southern China[J]. Geophysical Research Letters, 2016, 43(17):8978–8985.
[61] LE B M, YANG T, GU S. Upper Mantle and Transition Zone Structure beneath Leizhou–Hainan Region: Seismic Evidence for a Lower-Mantle Origin of the Hainan Plume[J]. Journal of Asian Earth Sciences, 2015, 111:580–588.
[62] WANG X, LI Q, LI G, et al. Seismic Triplication Used to Reveal Slab Subduction That Had Disappeared in the Late Mesozoic beneath the Northeastern South China Sea[J]. Tectonophysics, 2018, 727:28–40.
[63] GU Y J, DZIEWONSKI A M. Global Variability of Transition Zone Thickness[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B7):ESE 2-1-ESE 2-17.
[64] SCHMERR N, GARNERO E. Investigation of Upper Mantle Discontinuity Structure beneath the Central Pacific Using SS Precursors[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8):B08305-n/a.
[65] JENKINS J, COTTAAR S, WHITE R S, et al. Depressed Mantle Discontinuities beneath Iceland: Evidence of a Garnet Controlled 660 Km Discontinuity?[J]. Earth and Planetary Science Letters, 2016, 433:159–168.
[66] AN Y, GU Y J, SACCHI M D. Imaging Mantle Discontinuities Using Least Squares Radon Transform[J]. Journal of Geophysical Research, 2007, 112(B10):B10303-n/a.
[67] GU Y J, SACCHI M. Radon Transform Methods and Their Applications in Mapping Mantle Reflectivity Structure[J]. Surveys in Geophysics, 2009, 30(4–5):327–354.
[68] YU C, DAY E A, DE HOOP M V, et al. Mapping Mantle Transition Zone Discontinuities Beneath the Central Pacific With Array Processing of SS Precursors: Array Analysis of MTZ Discontinuities[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12):10,364-10,378.
[69] CHAMBERS K, DEUSS A, WOODHOUSE J H. Reflectivity of the 410-Km Discontinuity from PP and SS Precursors[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B2):B02031-n/a.
[70] LAWRENCE J F, SHEARER P M. Constraining Seismic Velocity and Density for the Mantle Transition Zone with Reflected and Transmitted Waveforms[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10):Q10012-n/a.
[71] SCHMERR N, GARNERO E J. Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity[J]. Science, 2007, 318(5850):623–626.
[72] BAI L, RITSEMA J. The Effect of Large-Scale Shear-Velocity Heterogeneity on SS Precursor Amplitudes: SS PRECURSOR AMPLITUDES[J]. Geophysical Research Letters, 2013, 40(23):6054–6058.
[73] GU Y, DZIEWONSKI A, AGEE C. Global De-Correlation of the Topography of Transition Zone Discontinuities[J]. EPSL Earth and Planetary Science Letters, 1998, 157(1):57–67.
[74] FLANAGAN M P, SHEARER P M. Global Mapping of Topography on Transition Zone Velocity Discontinuities by Stacking SS Precursors[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B2):2673–2692.
[75] SHEARER P M. Global Mapping of Upper Mantle Reflectors from Long-Period SS Precursors[J]. Geophysical Journal International, 1993, 115(3):878–904.
[76] YU C, ZHENG Y, SHANG X. Crazyseismic: A MATLAB GUI‐Based Software Package for Passive Seismic Data Preprocessing[J]. Seismological Research Letters, 2017, 88(2A):410–415.
[77] KENNETT B L N, ENGDAHL E R, BULAND R. Constraints on Seismic Velocities in the Earth from Traveltimes[J]. Geophysical Journal International, 1995, 122(1):108–124.
[78] KENNETT B L N, ENGDAHL E R. Traveltimes for Global Earthquake Location and Phase Identification[J]. Geophysical Journal International, 1991, 105(2):429–465.
[79] LASKE G, MASTERS G, MA Z, et al. Update on CRUST1.0-A 1-Degree Global Model of Earth’s Crust[J]. Paper Presented at EGU General Assembly Conference Abstracts, 2013, 15:2658.
[80] FRENCH S W, ROMANOWICZ B A. Whole-Mantle Radially Anisotropic Shear Velocity Structure from Spectral-Element Waveform Tomography[J]. Geophysical Journal International, 2014, 199(3):1303–1327.
[81] GRAND S P. Mantle Shear-Wave Tomography and the Fate of Subducted Slabs[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2002, 360(1800):2475–2491.
[82] HOUSER C, MASTERS G, SHEARER P, et al. Shear and Compressional Velocity Models of the Mantle from Cluster Analysis of Long-Period Waveforms[J]. Geophysical Journal International, 2008, 174(1):195–212.
[83] ZHENG Z, ROMANOWICZ B. Do Double ‘SS Precursors’ Mean Double Discontinuities?[J]. Geophysical Journal International, 2012, 191(3):1361–1373.
[84] EFRON B, TIBSHIRANI R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy[J]. Statistical Science, 1986, 1(1):54–75.
[85] TANG Q, ZHENG C. Crust and Upper Mantle Structure and Its Tectonic Implications in the South China Sea and Adjacent Regions[J]. Journal of Asian Earth Sciences, 2013, 62:510–525.
[86] SONG W, YU Y, GAO S S, et al. Seismic Anisotropy and Mantle Deformation Beneath the Central Sunda Plate[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3):n/a.
[87] HALL R. Late Jurassic–Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean[J]. Tectonophysics, 2012, 570–571:1–41.
[88] LEE T-Y, LAWVER L A. Cenozoic Plate Reconstruction of the South China Sea Region[J]. Tectonophysics, 1994, 235(1–2):149–180.
[89] HUTCHISON C S, BERGMAN S C, SWAUGER D A, et al. A Miocene Collisional Belt in North Borneo: Uplift Mechanism and Isostatic Adjustment Quantified by Thermochronology[J]. Journal of the Geological Society, 2000, 157(4):783–793.
[90] CULLEN A B. Transverse Segmentation of the Baram-Balabac Basin, NW Borneo: Refining the Model of Borneo’s Tectonic Evolution[J]. Petroleum Geoscience, 2010, 16(1):3–29.
[91] PUBELLIER M, MORLEY C K. The Basins of Sundaland (SE Asia): Evolution and Boundary Conditions[J]. Marine and Petroleum Geology, 2014, 58:555–578.
[92] HALL R, BREITFELD H T. Nature and Demise of the Proto-South China Sea[J]. Bulletin of the Geological Society of Malaysia, 2017, 63:61–76.
[93] GAO J, YU Y, SONG W, et al. Crustal Modifications beneath the Central Sunda Plate Associated with the Indo-Australian Subduction and the Evolution of the South China Sea[J]. Physics of the Earth and Planetary Interiors, 2020, 306:106539.
[94] DEUSS A, WOODHOUSE J. Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth’s Mantle[J]. Science, 2001, 294(5541):354–357.
[95] WOOD B J. The Effect of H2O on the 410-Kilometer Seismic Discontinuity[J]. Science, 1995, 268(5207):74–76.
[96] HALL R, SPAKMAN W. Mantle Structure and Tectonic History of SE Asia[J]. Tectonophysics, 2015, 658:14–45.
[97] GOES S, AGRUSTA R, VAN HUNEN J, et al. Subduction-Transition Zone Interaction: A Review[J]. Geosphere, 2017, 13(3):644–664.
[98] ZAHIROVIC S, SETON M, MÜLLER R D. The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia[J]. Solid Earth, 2014, 5(1):227–273.
[99] YAN P, LIU H. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea[J]. Journal of Asian Earth Sciences, 2004, 24(3):337–348.
[100]ZHOU D, RU K, CHEN H. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region[J]. Tectonophysics, 1995, 251(1–4):161–177.
[101]SCHLÜTER H U, HINZ K, BLOCK M. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea[J]. Marine Geology, 1996, 130(1/2):39–78.
[102]HALL R. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353–431.
[103]PESICEK J D, THURBER C H, WIDIYANTORO S, et al. Complex Slab Subduction beneath Northern Sumatra[J]. Geophysical Research Letters, 2008, 35(20):L20303.
[104]HALL R, ALI J R, ANDERSON C D, et al. Origin and Motion History of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1–4):229–250.
[105]BIRD P. An Updated Digital Model of Plate Boundaries: UPDATED MODEL OF PLATE BOUNDARIES[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3).
[106]LEE T-Y, LAWVER L A. Cenozoic Plate Reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1–4):85–138.
[107]AGIUS M R, RYCHERT C A, HARMON N, et al. Mapping the Mantle Transition Zone beneath Hawaii from Ps Receiver Functions: Evidence for a Hot Plume and Cold Mantle Downwellings[J]. Earth and Planetary Science Letters, 2017, 474:226–236.
[108]SAKI M, THOMAS C, NIPPRESS S E J, et al. Topography of Upper Mantle Seismic Discontinuities beneath the North Atlantic: The Azores, Canary and Cape Verde Plumes[J]. Earth and Planetary Science Letters, 2015, 409:193–202.
[109]AGIUS M R, RYCHERT C A, HARMON N, et al. A Thin Mantle Transition Zone beneath the Equatorial Mid-Atlantic Ridge[J]. Nature, 2021, 589(7843):562–566.
[110]TAUZIN B, DEBAYLE E, WITTLINGER G. The Mantle Transition Zone as Seen by Global Pds Phases: No Clear Evidence for a Thin Transition Zone beneath Hotspots[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8):B08309-n/a.
[111]MONTELLI R, NOLET G, DAHLEN F A, et al. Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle[J]. Science, 2004, 303(5656):338–343.
[112]LITASOV K D, OHTANI E, SANO A, et al. Wet Subduction versus Cold Subduction[J]. Geophysical Research Letters, 2005, 32(13):L13312-n/a.
[113]BALLMER M D, ITO G, WOLFE C J, et al. Double Layering of a Thermochemical Plume in the Upper Mantle beneath Hawaii[J]. Earth and Planetary Science Letters, 2013, 376:155–164.
[114]DANNBERG J, SOBOLEV S V. Low-Buoyancy Thermochemical Plumes Resolve Controversy of Classical Mantle Plume Concept[J]. Nature Communications, 2015, 6(1):6960–6960.
[115]HUA Y, ZHAO D, XU Y. Azimuthal Anisotropy Tomography of the Southeast Asia Subduction System[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2).
[116]WANG Z, ZHAO D, CHEN X, et al. Subducting Slabs, Hainan Plume and Intraplate Volcanism in SE Asia: Insight from P-Wave Mantle Tomography[J]. Tectonophysics, 2022, 831.
[117]ZHAO D, TOYOKUNI G, KURATA K. Deep Mantle Structure and Origin of Cenozoic Intraplate Volcanoes in Indochina, Hainan and South China Sea[J]. Geophysical Journal International, 2021, 225(1):572–588.
[118]MATSUKAGE K N, NISHIHARA Y, KARATO S. Seismological Signature of Chemical Differentiation of Earth’s Upper Mantle[J]. Journal of Geophysical Research, 2005, 110(B12):B12305-n/a.
[119]MIBE K, KAWAMOTO T, MATSUKAGE K N, et al. Slab Melting versus Slab Dehydration in Subduction-Zone Magmatism[J]. Proceedings of the National Academy of Sciences, 2011, 108(20):8177–8182.
[120]XU Y, WEI J, QIU H, et al. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design[J]. Chinese Science Bulletin, 2012, 57(24):3150–3164.
[121]JAMES D E, FOUCH M J, CARLSON R W, et al. Slab Fragmentation, Edge Flow and the Origin of the Yellowstone Hotspot Track[J]. Earth and Planetary Science Letters, 2011, 311(1–2):124–135.
[122]TANG Y, OBAYASHI M, NIU F, et al. Changbaishan Volcanism in Northeast China Linked to Subduction-Induced Mantle Upwelling[J]. Nature Geoscience, 2014, 7(6):470–475.
[123]YE Y, GU C, SHIM S, et al. The Postspinel Boundary in Pyrolitic Compositions Determined in the Laser‐heated Diamond Anvil Cell[J]. Geophysical Research Letters, 2014, 41(11):3833–3841.
[124]PHIPPS MORGAN J, HASENCLEVER J, HORT M, et al. On Subducting Slab Entrainment of Buoyant Asthenosphere[J]. Terra Nova, 2007, 19(3):167–173.
[125]LONG M D, SILVER P G. The Subduction Zone Flow Field from Seismic Anisotropy: A Global View[J]. Science, 2008, 319(5861):315–318.
[126]HONDA S, MORISHIGE M, ORIHASHI Y. Sinking Hot Anomaly Trapped at the 410 Km Discontinuity near the Honshu Subduction Zone, Japan[J]. Earth and Planetary Science Letters, 2007, 261(3–4):565–577.
[127]张蒙. 华南及南海北缘上地幔间断面结构的研究[D]. 中国科学技术大学, 2020.
[128]CAI-XIA X, ZHOU Y, ZHUO-JUN W, et al. Evidence of SdP Conversion Phases for the 300 Km Discontinuity beneath Tonga-Fiji Region[J]. Chinese Journal of Geophysics (in Chinese), 2012, 55(5):1591–1600.
[129]PARK J-O, TOKUYAMA H, SHINOHARA M, et al. Seismic Record of Tectonic Evolution and Backarc Rifting in the Southern Ryukyu Island Arc System[J]. Tectonophysics, 1998, 294(1–2):21–42.
[130]ZANG S X, CHEN Q Y, NING J Y, et al. Motion of the Philippine Sea Plate Consistent with the NUVEL-1A Model[J]. Geophysical Journal International, 2002, 150(3):809–819.
[131]HUANG J, ZHAO D. High-Resolution Mantle Tomography of China and Surrounding Regions[J]. Journal of Geophysical Research, 2006, 111(B9):B09305-n/a.
[132]GERYA T V, YUEN D A, MARESCH W V. Thermomechanical Modelling of Slab Detachment[J]. Earth and Planetary Science Letters, 2004, 226(1–2):101–116.
[133]WORTEL M J R, SPAKMAN W. Subduction and Slab Detachment in the Mediterranean-Carpathian Region[J]. Science, 2000, 290(5498):1910–1917.
[134]CHEN T, GWANMESIA G, WANG X, et al. Anomalous Elastic Properties of Coesite at High Pressure and Implications for the Upper Mantle X-Discontinuity[J]. Earth and Planetary Science Letters, 2015, 412.

所在学位评定分委会
物理系
国内图书分类号
P738.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335712
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
尚正涛. 利用SS前驱波研究南海及周缘地区的上地幔不连续面结构[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930408-尚正涛-海洋科学与工程(5305KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[尚正涛]的文章
百度学术
百度学术中相似的文章
[尚正涛]的文章
必应学术
必应学术中相似的文章
[尚正涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。