[1] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine[J]. Geology, 1982, 10(12):611.
[2] PELTZER G, TAPPONNIER P. Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision: An Experimental Approach[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B12):15085–15117.
[3] WU J, SUPPE J, LU R, et al. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6):4670–4741.
[4] WU J, SUPPE J. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography[J]. Journal of Earth Science, 2018, 29(6):1304–1318.
[5] SUN W. Initiation and Evolution of the South China Sea: An Overview[J]. Acta Geochimica, 2016, 35(3):215–225.
[6] YAN Q, SHI X, CASTILLO P R. The Late Mesozoic–Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective[J]. Journal of Asian Earth Sciences, 2014, 85:178–201.
[7] ZHOU H, XIAO L, DONG Y, et al. Geochemical and Geochronological Study of the Sanshui Basin Bimodal Volcanic Rock Suite, China: Implications for Basin Dynamics in Southeastern China[J]. Journal of Asian Earth Sciences, 2009, 34(2):178–189.
[8] ZHANG G-L, LUO Q, ZHAO J, et al. Geochemical Nature of Sub-Ridge Mantle and Opening Dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489:145–155.
[9] YU M, YAN Y, HUANG C-Y, et al. Opening of the South China Sea and Upwelling of the Hainan Plume[J]. Geophysical Research Letters, 2018, 45(6):2600–2609.
[10] STERN R J, LIN P-N, MORRIS J D, et al. Enriched Back-Arc Basin Basalts from the Northern Mariana Trough: Implications for the Magmatic Evolution of Back-Arc Basins[J]. Earth and Planetary Science Letters, 1990, 100(1–3):210–225.
[11] HAWKINS J W, LONSDALE P F, MACDOUGALL J D, et al. Petrology of the Axial Ridge of the Mariana Trough Backarc Spreading Center[J]. Earth and Planetary Science Letters, 1990, 100(1–3):226–250.
[12] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4):6299–6328.
[13] HSU S-K, YEH Y, DOO W-B, et al. New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and Their Tectonic Implications[J]. Marine Geophysical Researches, 2004, 25(1–2):29–44.
[14] ARGUS D F, GORDON R G, DEMETS C. Geologically Current Motion of 56 Plates Relative to the No-Net-Rotation Reference Frame[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(11):n/a.
[15] LI C-F, XU X, LIN J, et al. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12):4958–4983.
[16] SUN Z, LIN J, QIU N, et al. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin[J]. National Science Review, 2019, 6(5):871–876.
[17] 汪品先. 追踪边缘海的生命史:“南海深部计划”的科学目标[J]. Chinese Science Bulletin, 2012, 57(20):1807–1826.
[18] XIA S, ZHAO D, SUN J, et al. Teleseismic Imaging of the Mantle beneath Southernmost China: New Insights into the Hainan Plume[J]. Gondwana Research, 2016, 36:46–56.
[19] LIN J, XU Y, SUN Z, et al. Mantle Upwelling beneath the South China Sea and Links to Surrounding Subduction Systems[J]. National Science Review, 2019, 6(5):877–881.
[20] ZHANG N, LI Z-X. Formation of Mantle “Lone Plumes” in the Global Downwelling Zone — A Multiscale Modelling of Subduction-Controlled Plume Generation beneath the South China Sea[J]. Tectonophysics, 2018, 723:1–13.
[21] YAN Q, SHI X, METCALFE I, et al. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia[J]. Scientific Reports, 2018, 8(1):2640.
[22] ZHANG G-L, CHEN L-H, JACKSON M G, et al. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea[J]. Nature Geoscience, 2017, 10(3):229–235.
[23] LI C, VAN DER HILST R D, ENGDAHL E R, et al. A New Global Model for P Wave Speed Variations in Earth’s Mantle[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):Q05018-n/a.
[24] FACCENNA C, BECKER T W, LALLEMAND S, et al. Subduction-Triggered Magmatic Pulses: A New Class of Plumes?[J]. Earth and Planetary Science Letters, 2010, 299(1–2):54–68.
[25] YU Y, GAO S S, LIU K H, et al. Mantle Transition Zone Discontinuities beneath the Indochina Peninsula: Implications for Slab Subduction and Mantle Upwelling[J]. Geophysical Research Letters, 2017, 44(14):7159–7167.
[26] YU Y, XU Z, GAO S S, et al. Layered Mantle Heterogeneities Associated with Post-Subducted Slab Segments[J]. Earth and Planetary Science Letters, 2021, 571:117115.
[27] CHEN L, FACCENDA M. Subduction‐Induced Upwelling of a Hydrous Transition Zone: Implications for the Cenozoic Magmatism in Northeast China[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11):11489–11504.
[28] YANG J, FACCENDA M. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone[J]. Nature, 2020, 579(7797):88–91.
[29] DOKHT R M H, GU Y J, SACCHI M D. Migration Imaging of the Java Subduction Zones[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2):1540–1558.
[30] OBAYASHI M, SUGIOKA H, YOSHIMITSU J, et al. High Temperature Anomalies Oceanward of Subducting Slabs at the 410-Km Discontinuity[J]. Earth and Planetary Science Letters, 2006, 243(1–2):149–158.
[31] WANG T, CHEN L. Distinct Velocity Variations around the Base of the Upper Mantle beneath Northeast Asia[J]. Physics of the Earth and Planetary Interiors, 2009, 172(3–4):241–256.
[32] LEBEDEV S, NOLET G. Upper Mantle beneath Southeast Asia from S Velocity Tomography[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1):2048-n/a.
[33] LEI J, XIE F, FAN Q, et al. Seismic Imaging of the Deep Structure under the Chinese Volcanoes: An Overview[J]. Physics of the Earth and Planetary Interiors, 2013, 224:104–123.
[34] LIU H, CHEN F, LENG W, et al. Crustal Footprint of the Hainan Plume Beneath Southeast China[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4):3065–3079.
[35] WANG X-C, LI Z-X, LI X-H, et al. Identification of an Ancient Mantle Reservoir and Young Recycled Materials in the Source Region of a Young Mantle Plume: Implications for Potential Linkages between Plume and Plate Tectonics[J]. Earth and Planetary Science Letters, 2013, 377–378:248–259.
[36] ZOU H, FAN Q. U–Th Isotopes in Hainan Basalts: Implications for Sub-Asthenospheric Origin of EM2 Mantle Endmember and the Dynamics of Melting beneath Hainan Island[J]. Lithos, 2010, 116(1–2):145–152.
[37] ZHOU D, SUN Z, CHEN H, et al. Mesozoic Paleogeography and Tectonic Evolution of South China Sea and Adjacent Areas in the Context of Tethyan and Paleo-Pacific Interconnections[J]. Island Arc, 2008, 17(2):186–207.
[38] LI C, VAN DER HILST R D. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography[J]. Journal of Geophysical Research, 2010, 115(B7):n/a.
[39] KATSURA T, ITO E. The System Mg2SiO4–Fe2SiO4 at High Pressures and Temperatures: Precise Determination of Stabilities of Olivine, Modified Spinel, and Spinel[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11):15663–15670.
[40] RIGDEN S M, GWANMESIA G D, GERALD J D F, et al. Spinel Elasticity and Seismic Structure of the Transition Zone of the Mantle[J]. Nature, 1991, 354(6349):143–145.
[41] ITO E, TAKAHASHI E. Postspinel Transformations in the System Mg 2 SiO 4 -Fe 2 SiO 4 and Some Geophysical Implications[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8):10637–10646.
[42] BINA C R, HELFFRICH G. Phase Transition Clapeyron Slopes and Transition Zone Seismic Discontinuity Topography[J]. Journal of Geophysical Research, 1994, 99(B8):15853.
[43] HIROSE K. Phase Transitions in Pyrolitic Mantle around 670-Km Depth: Implications for Upwelling of Plumes from the Lower Mantle[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4):ECV 3-1-ECV 3-13.
[44] DEUSS A. Seismic Observations of Transition-Zone Discontinuities beneath Hotspot Locations[M]//Special Paper 430: Plates, Plumes and Planetary Processes. Geological Society of America, 2007: 121–136.
[45] SCHMERR N, KELLY B, THORNE M. Broadband Array Observations of the 300 Km Seismic Discontinuity[J]. Geophysical Research Letters, 2013, 40(5):841–846.
[46] XU F, VIDALE J, EARLE P, et al. Mantle Discontinuities under Southern Africa from Precursors to P’P’df[J]. Geophysical Research Letters - GEOPHYS RES LETT, 1998, 25(4):571–574.
[47] REVENAUGH J, JORDAN T. Mantle Layering from ScS Reverberations: 3. The Upper Mantle.[J]. Journal of Geophysical Research, 1991, 96(B12):19781–19810.
[48] SHEN X, YUAN X, LI X. A Ubiquitous Low Velocity Layer at the Base of the Mantle Transition Zone[J]. Geophysical Research Letters, 2014, 41(3):836–842.
[49] ZHANG Z, LAY T. Investigation of Upper Mantle Discontinuities Near Northwestern Pacific Subduction Zones Using Precursors to SSH[J]. Journal of Geophysical Research, 1993, 98(B3):4389–4405.
[50] CUI Q, WENLAN L, GUOHUI L, et al. Seismic Detection of the X-Discontinuity beneath the Ryukyu Subduction Zone from the SdP Conversion Phase[J]. Earth and Planetary Physics, 2018, 2(3):208–219.
[51] CHU R, HELMBERGER D, GURNIS M. Upper Mantle Surprises Derived from the Recent Virginia Earthquake Waveform Data[J]. Earth and Planetary Science Letters, 2014, 402(C):167–175.
[52] CONNOLLY J A D, KERRICK D M. Metamorphic Controls on Seismic Velocity of Subducted Oceanic Crust at 100–250 Km Depth[J]. Earth and Planetary Science Letters, 2002, 204(1–2):61–74.
[53] WILLIAMS Q, REVENAUGH J. Ancient Subduction, Mantle Eclogite, and the 300 Km Seismic Discontinuity[J]. Geology, 2005, 33(1):1–4.
[54] BAGLEY B, COURTIER A, REVENAUGH J. Melting in the Deep Upper Mantle Oceanward of the Honshu Slab[J]. Physics of the Earth and Planetary Interiors, 2009, 175(3):137–144.
[55] LI A, FISCHER K, LEE S, et al. Crust and Upper Mantle Discontinuity Structure beneath Eastern North America[J]. Journal of Geophysical Research, 2002, 107(15):ESE 7-1-ESE 7-12.
[56] JACOBSEN S D, LIU Z, BALLARAN T B, et al. Effect of H2O on Upper Mantle Phase Transitions in MgSiO3: Is the Depth of the Seismic X-Discontinuity an Indicator of Mantle Water Content?[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1–2):234–244.
[57] RICARD Y, MATTERN E, MATAS J. Synthetic Tomographic Images of Slabs from Mineral Physics[M]. VAN DER HILST R D, BASS J D, MATAS J, et al., eds.//Geophysical Monograph Series. Washington, D. C.: American Geophysical Union, 2005: 283–300.
[58] SHEN Y, SOLOMON S C, BJARNASON I Th, et al. Seismic Evidence for a Lower-Mantle Origin of the Iceland Plume[J]. Nature, 1998, 395(6697):62–65.
[59] HUANG H, TOSI N, CHANG S-J, et al. Receiver Function Imaging of the Mantle Transition Zone beneath the South China Block[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(10):3666–3678.
[60] WEI S S, CHEN Y J. Seismic Evidence of the Hainan Mantle Plume by Receiver Function Analysis in Southern China[J]. Geophysical Research Letters, 2016, 43(17):8978–8985.
[61] LE B M, YANG T, GU S. Upper Mantle and Transition Zone Structure beneath Leizhou–Hainan Region: Seismic Evidence for a Lower-Mantle Origin of the Hainan Plume[J]. Journal of Asian Earth Sciences, 2015, 111:580–588.
[62] WANG X, LI Q, LI G, et al. Seismic Triplication Used to Reveal Slab Subduction That Had Disappeared in the Late Mesozoic beneath the Northeastern South China Sea[J]. Tectonophysics, 2018, 727:28–40.
[63] GU Y J, DZIEWONSKI A M. Global Variability of Transition Zone Thickness[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B7):ESE 2-1-ESE 2-17.
[64] SCHMERR N, GARNERO E. Investigation of Upper Mantle Discontinuity Structure beneath the Central Pacific Using SS Precursors[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8):B08305-n/a.
[65] JENKINS J, COTTAAR S, WHITE R S, et al. Depressed Mantle Discontinuities beneath Iceland: Evidence of a Garnet Controlled 660 Km Discontinuity?[J]. Earth and Planetary Science Letters, 2016, 433:159–168.
[66] AN Y, GU Y J, SACCHI M D. Imaging Mantle Discontinuities Using Least Squares Radon Transform[J]. Journal of Geophysical Research, 2007, 112(B10):B10303-n/a.
[67] GU Y J, SACCHI M. Radon Transform Methods and Their Applications in Mapping Mantle Reflectivity Structure[J]. Surveys in Geophysics, 2009, 30(4–5):327–354.
[68] YU C, DAY E A, DE HOOP M V, et al. Mapping Mantle Transition Zone Discontinuities Beneath the Central Pacific With Array Processing of SS Precursors: Array Analysis of MTZ Discontinuities[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12):10,364-10,378.
[69] CHAMBERS K, DEUSS A, WOODHOUSE J H. Reflectivity of the 410-Km Discontinuity from PP and SS Precursors[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B2):B02031-n/a.
[70] LAWRENCE J F, SHEARER P M. Constraining Seismic Velocity and Density for the Mantle Transition Zone with Reflected and Transmitted Waveforms[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10):Q10012-n/a.
[71] SCHMERR N, GARNERO E J. Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity[J]. Science, 2007, 318(5850):623–626.
[72] BAI L, RITSEMA J. The Effect of Large-Scale Shear-Velocity Heterogeneity on SS Precursor Amplitudes: SS PRECURSOR AMPLITUDES[J]. Geophysical Research Letters, 2013, 40(23):6054–6058.
[73] GU Y, DZIEWONSKI A, AGEE C. Global De-Correlation of the Topography of Transition Zone Discontinuities[J]. EPSL Earth and Planetary Science Letters, 1998, 157(1):57–67.
[74] FLANAGAN M P, SHEARER P M. Global Mapping of Topography on Transition Zone Velocity Discontinuities by Stacking SS Precursors[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B2):2673–2692.
[75] SHEARER P M. Global Mapping of Upper Mantle Reflectors from Long-Period SS Precursors[J]. Geophysical Journal International, 1993, 115(3):878–904.
[76] YU C, ZHENG Y, SHANG X. Crazyseismic: A MATLAB GUI‐Based Software Package for Passive Seismic Data Preprocessing[J]. Seismological Research Letters, 2017, 88(2A):410–415.
[77] KENNETT B L N, ENGDAHL E R, BULAND R. Constraints on Seismic Velocities in the Earth from Traveltimes[J]. Geophysical Journal International, 1995, 122(1):108–124.
[78] KENNETT B L N, ENGDAHL E R. Traveltimes for Global Earthquake Location and Phase Identification[J]. Geophysical Journal International, 1991, 105(2):429–465.
[79] LASKE G, MASTERS G, MA Z, et al. Update on CRUST1.0-A 1-Degree Global Model of Earth’s Crust[J]. Paper Presented at EGU General Assembly Conference Abstracts, 2013, 15:2658.
[80] FRENCH S W, ROMANOWICZ B A. Whole-Mantle Radially Anisotropic Shear Velocity Structure from Spectral-Element Waveform Tomography[J]. Geophysical Journal International, 2014, 199(3):1303–1327.
[81] GRAND S P. Mantle Shear-Wave Tomography and the Fate of Subducted Slabs[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2002, 360(1800):2475–2491.
[82] HOUSER C, MASTERS G, SHEARER P, et al. Shear and Compressional Velocity Models of the Mantle from Cluster Analysis of Long-Period Waveforms[J]. Geophysical Journal International, 2008, 174(1):195–212.
[83] ZHENG Z, ROMANOWICZ B. Do Double ‘SS Precursors’ Mean Double Discontinuities?[J]. Geophysical Journal International, 2012, 191(3):1361–1373.
[84] EFRON B, TIBSHIRANI R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy[J]. Statistical Science, 1986, 1(1):54–75.
[85] TANG Q, ZHENG C. Crust and Upper Mantle Structure and Its Tectonic Implications in the South China Sea and Adjacent Regions[J]. Journal of Asian Earth Sciences, 2013, 62:510–525.
[86] SONG W, YU Y, GAO S S, et al. Seismic Anisotropy and Mantle Deformation Beneath the Central Sunda Plate[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3):n/a.
[87] HALL R. Late Jurassic–Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean[J]. Tectonophysics, 2012, 570–571:1–41.
[88] LEE T-Y, LAWVER L A. Cenozoic Plate Reconstruction of the South China Sea Region[J]. Tectonophysics, 1994, 235(1–2):149–180.
[89] HUTCHISON C S, BERGMAN S C, SWAUGER D A, et al. A Miocene Collisional Belt in North Borneo: Uplift Mechanism and Isostatic Adjustment Quantified by Thermochronology[J]. Journal of the Geological Society, 2000, 157(4):783–793.
[90] CULLEN A B. Transverse Segmentation of the Baram-Balabac Basin, NW Borneo: Refining the Model of Borneo’s Tectonic Evolution[J]. Petroleum Geoscience, 2010, 16(1):3–29.
[91] PUBELLIER M, MORLEY C K. The Basins of Sundaland (SE Asia): Evolution and Boundary Conditions[J]. Marine and Petroleum Geology, 2014, 58:555–578.
[92] HALL R, BREITFELD H T. Nature and Demise of the Proto-South China Sea[J]. Bulletin of the Geological Society of Malaysia, 2017, 63:61–76.
[93] GAO J, YU Y, SONG W, et al. Crustal Modifications beneath the Central Sunda Plate Associated with the Indo-Australian Subduction and the Evolution of the South China Sea[J]. Physics of the Earth and Planetary Interiors, 2020, 306:106539.
[94] DEUSS A, WOODHOUSE J. Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth’s Mantle[J]. Science, 2001, 294(5541):354–357.
[95] WOOD B J. The Effect of H2O on the 410-Kilometer Seismic Discontinuity[J]. Science, 1995, 268(5207):74–76.
[96] HALL R, SPAKMAN W. Mantle Structure and Tectonic History of SE Asia[J]. Tectonophysics, 2015, 658:14–45.
[97] GOES S, AGRUSTA R, VAN HUNEN J, et al. Subduction-Transition Zone Interaction: A Review[J]. Geosphere, 2017, 13(3):644–664.
[98] ZAHIROVIC S, SETON M, MÜLLER R D. The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia[J]. Solid Earth, 2014, 5(1):227–273.
[99] YAN P, LIU H. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea[J]. Journal of Asian Earth Sciences, 2004, 24(3):337–348.
[100]ZHOU D, RU K, CHEN H. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region[J]. Tectonophysics, 1995, 251(1–4):161–177.
[101]SCHLÜTER H U, HINZ K, BLOCK M. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea[J]. Marine Geology, 1996, 130(1/2):39–78.
[102]HALL R. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353–431.
[103]PESICEK J D, THURBER C H, WIDIYANTORO S, et al. Complex Slab Subduction beneath Northern Sumatra[J]. Geophysical Research Letters, 2008, 35(20):L20303.
[104]HALL R, ALI J R, ANDERSON C D, et al. Origin and Motion History of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1–4):229–250.
[105]BIRD P. An Updated Digital Model of Plate Boundaries: UPDATED MODEL OF PLATE BOUNDARIES[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3).
[106]LEE T-Y, LAWVER L A. Cenozoic Plate Reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1–4):85–138.
[107]AGIUS M R, RYCHERT C A, HARMON N, et al. Mapping the Mantle Transition Zone beneath Hawaii from Ps Receiver Functions: Evidence for a Hot Plume and Cold Mantle Downwellings[J]. Earth and Planetary Science Letters, 2017, 474:226–236.
[108]SAKI M, THOMAS C, NIPPRESS S E J, et al. Topography of Upper Mantle Seismic Discontinuities beneath the North Atlantic: The Azores, Canary and Cape Verde Plumes[J]. Earth and Planetary Science Letters, 2015, 409:193–202.
[109]AGIUS M R, RYCHERT C A, HARMON N, et al. A Thin Mantle Transition Zone beneath the Equatorial Mid-Atlantic Ridge[J]. Nature, 2021, 589(7843):562–566.
[110]TAUZIN B, DEBAYLE E, WITTLINGER G. The Mantle Transition Zone as Seen by Global Pds Phases: No Clear Evidence for a Thin Transition Zone beneath Hotspots[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8):B08309-n/a.
[111]MONTELLI R, NOLET G, DAHLEN F A, et al. Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle[J]. Science, 2004, 303(5656):338–343.
[112]LITASOV K D, OHTANI E, SANO A, et al. Wet Subduction versus Cold Subduction[J]. Geophysical Research Letters, 2005, 32(13):L13312-n/a.
[113]BALLMER M D, ITO G, WOLFE C J, et al. Double Layering of a Thermochemical Plume in the Upper Mantle beneath Hawaii[J]. Earth and Planetary Science Letters, 2013, 376:155–164.
[114]DANNBERG J, SOBOLEV S V. Low-Buoyancy Thermochemical Plumes Resolve Controversy of Classical Mantle Plume Concept[J]. Nature Communications, 2015, 6(1):6960–6960.
[115]HUA Y, ZHAO D, XU Y. Azimuthal Anisotropy Tomography of the Southeast Asia Subduction System[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2).
[116]WANG Z, ZHAO D, CHEN X, et al. Subducting Slabs, Hainan Plume and Intraplate Volcanism in SE Asia: Insight from P-Wave Mantle Tomography[J]. Tectonophysics, 2022, 831.
[117]ZHAO D, TOYOKUNI G, KURATA K. Deep Mantle Structure and Origin of Cenozoic Intraplate Volcanoes in Indochina, Hainan and South China Sea[J]. Geophysical Journal International, 2021, 225(1):572–588.
[118]MATSUKAGE K N, NISHIHARA Y, KARATO S. Seismological Signature of Chemical Differentiation of Earth’s Upper Mantle[J]. Journal of Geophysical Research, 2005, 110(B12):B12305-n/a.
[119]MIBE K, KAWAMOTO T, MATSUKAGE K N, et al. Slab Melting versus Slab Dehydration in Subduction-Zone Magmatism[J]. Proceedings of the National Academy of Sciences, 2011, 108(20):8177–8182.
[120]XU Y, WEI J, QIU H, et al. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design[J]. Chinese Science Bulletin, 2012, 57(24):3150–3164.
[121]JAMES D E, FOUCH M J, CARLSON R W, et al. Slab Fragmentation, Edge Flow and the Origin of the Yellowstone Hotspot Track[J]. Earth and Planetary Science Letters, 2011, 311(1–2):124–135.
[122]TANG Y, OBAYASHI M, NIU F, et al. Changbaishan Volcanism in Northeast China Linked to Subduction-Induced Mantle Upwelling[J]. Nature Geoscience, 2014, 7(6):470–475.
[123]YE Y, GU C, SHIM S, et al. The Postspinel Boundary in Pyrolitic Compositions Determined in the Laser‐heated Diamond Anvil Cell[J]. Geophysical Research Letters, 2014, 41(11):3833–3841.
[124]PHIPPS MORGAN J, HASENCLEVER J, HORT M, et al. On Subducting Slab Entrainment of Buoyant Asthenosphere[J]. Terra Nova, 2007, 19(3):167–173.
[125]LONG M D, SILVER P G. The Subduction Zone Flow Field from Seismic Anisotropy: A Global View[J]. Science, 2008, 319(5861):315–318.
[126]HONDA S, MORISHIGE M, ORIHASHI Y. Sinking Hot Anomaly Trapped at the 410 Km Discontinuity near the Honshu Subduction Zone, Japan[J]. Earth and Planetary Science Letters, 2007, 261(3–4):565–577.
[127]张蒙. 华南及南海北缘上地幔间断面结构的研究[D]. 中国科学技术大学, 2020.
[128]CAI-XIA X, ZHOU Y, ZHUO-JUN W, et al. Evidence of SdP Conversion Phases for the 300 Km Discontinuity beneath Tonga-Fiji Region[J]. Chinese Journal of Geophysics (in Chinese), 2012, 55(5):1591–1600.
[129]PARK J-O, TOKUYAMA H, SHINOHARA M, et al. Seismic Record of Tectonic Evolution and Backarc Rifting in the Southern Ryukyu Island Arc System[J]. Tectonophysics, 1998, 294(1–2):21–42.
[130]ZANG S X, CHEN Q Y, NING J Y, et al. Motion of the Philippine Sea Plate Consistent with the NUVEL-1A Model[J]. Geophysical Journal International, 2002, 150(3):809–819.
[131]HUANG J, ZHAO D. High-Resolution Mantle Tomography of China and Surrounding Regions[J]. Journal of Geophysical Research, 2006, 111(B9):B09305-n/a.
[132]GERYA T V, YUEN D A, MARESCH W V. Thermomechanical Modelling of Slab Detachment[J]. Earth and Planetary Science Letters, 2004, 226(1–2):101–116.
[133]WORTEL M J R, SPAKMAN W. Subduction and Slab Detachment in the Mediterranean-Carpathian Region[J]. Science, 2000, 290(5498):1910–1917.
[134]CHEN T, GWANMESIA G, WANG X, et al. Anomalous Elastic Properties of Coesite at High Pressure and Implications for the Upper Mantle X-Discontinuity[J]. Earth and Planetary Science Letters, 2015, 412.
修改评论