[1] United Nations office on Drug and Crime. World Drug Report 2021[EB/OL]. (2021-02-01)
[2022-03-01]. https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html.
[2] 杨广博. 我国毒品管制制度与改良方案[D]. 北京: 中国人民公安大学,2018.
[3] 周漪颖, 崔巍, 张鑫, 等. 新精神活性物质分类现状与管制展望[J]. 中国药物滥用防治杂志, 2020, 26(6): 7.
[4] SWENDSEN J, CONWAY K P, DEGENHARDT L, et al. Socio-demographic risk factors for alcohol and drug dependence: the 10-year follow-up of the national comorbidity survey[J].Addiction, 2009, 104(8): 1346-1355.
[5] 蔡志基. 药物依赖性和药物滥用的管制[J]. 中国临床药理学杂志, 1985, 1(4): 258-261.
[6] LISTOS J, ŁUPINA M, TALAREK S, et al. The mechanisms involved in morphine addiction: an overview[J]. International Journal of Molecular Sciences, 2019, 20(17): 4302.
[7] HE Q, WU J, WANG X, et al. Exercise intervention can reduce the degree of drug dependence of patients with amphetamines/addiction by improving dopamine level and immunity and reducing negative emotions[J]. American Journal of Translational Research, 2021, 13(3): 1779.
[8] 张丽娜, 周如意, 张弘. 药物依赖性失眠的中医治疗概述[J]. 中国医药导刊, 2021, 23(12): 916-920.
[9] PERRY A E, MARTYN-ST JAMES M, BURNS L, et al. Interventions for drug-using offenders with co-occurring mental health problems[J]. Cochrane Database of Systematic Reviews, 2019(10): 2-15.
[10] 国家药品监督管理局药品审评中心. 药物非临床依赖性研究技术指导原则[EB/OL]. (2022-01-07)
[2022-03-08]. https://www.cde.org.cn/main/news/viewInfoCommon/3aa4564491cd73c5e581dd228c8aee34.
[11] WASSERMAN E A, MILLER R R. What’s elementary about associative learning?[J]. Annual Review of Psychology, 1997, 48(1): 573-607.
[12] 王采玲. 甲基苯丙胺成瘾联合学习记忆细胞的发现及机制研究[D]. 南京: 南京中医药大学,2020.
[13] SAUNDERS B T, ROBINSON T E. A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction[J]. Biological Psychiatry, 2010, 67(8): 730-736.
[14] SAUNDERS B T, ROBINSON T E. Individual variation in the motivational properties of cocaine[J]. Neuropsychopharmacology, 2011, 36(8): 1668-1676.
[15] YAGER L M, ROBINSON T E. A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue[J]. Psychopharmacology, 2013, 226(2): 217-228.
[16] 李亮, 曹福羊, 田冶, 等. 在大鼠药物辨别和小鼠催促戒断模型上评价右美托咪定的依赖性潜能[J]. 中国药理学与毒理学杂志, 2021, 35(3): 6.
[17] WANG B, LV K, LIU H, et al. Contribution of the 𝛼5 GABAA receptor to the discriminative stimulus effects of propofol in rat[J]. Neuroreport, 2018, 29(5): 347.
[18] JÄRBE T U, LEMAY B J, HALIKHEDKAR A, et al. Differentiation between low-and highefficacy CB1 receptor agonists using a drug discrimination protocol for rats[J]. Psychopharmacology, 2014, 231(3): 489-500.
[19] ESPEJO E F, CADOR M, STINUS L. Ethopharmacological analysis of naloxone-precipitated morphine withdrawal syndrome in rats: a newly-developed ”etho-score”[J]. Psychopharmacology, 1995, 122(2): 122-130.
[20] 李凌江, 陆林. 精神病学[M]. 北京: 人民卫生出版社, 2005: 214-215.
[21] BLÄSIG J, HERZ A, REINHOLD K, et al. Development of physical dependence on morphine in respect to time and dosage and quantification of the precipitated withdrawal syndrome in rats[J]. Psychopharmacologia, 1973, 33(1): 19-38.
[22] CICERO T, MEYER E. Morphine pellet implantation in rats: quantitative assessment of tolerance and dependence[J]. Journal of Pharmacology and Experimental Therapeutics, 1973, 184(2): 404-408.
[23] ZACHARIOU V, BRUNZELL D H, HAWES J, et al. The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal[J]. Proceedings of the National Academy of Sciences, 2003, 100(15): 9028-9033.
[24] HOLMES F E, ARMENAKI A, IISMAA T P, et al. Galanin negatively modulates opiate withdrawal via galanin receptor 1[J]. Psychopharmacology, 2012, 220(3): 619-625.
[25] 李菁, 袁孝如, 李跃华, 等. 酒精依赖大鼠模型建立[J]. 中国药物依赖性杂志, 2006, 15(6): 5.
[26] SMITH L C, TIEU L, SUHANDYNATA R T, et al. Cannabidiol reduces withdrawal symptoms in nicotine-dependent rats[J]. Psychopharmacology, 2021, 238(8): 2201-2211.
[27] 刘献文, 逯素芬, 于爱兰, 等. 改良尼古丁依赖-戒断大鼠模型的建立与疼痛敏感性观察[J]. 国际麻醉学与复苏杂志, 2013, 34(7): 5.
[28] KOKANE S S, PERROTTI L I. Sex differences and the role of estradiol in mesolimbic reward circuits and vulnerability to cocaine and opiate addiction[J]. Frontiers in Behavioral Neuroscience, 2020, 14: 74.
[29] WANG S. Historical review: opiate addiction and opioid receptors[J]. Cell Transplantation, 2019, 28(3): 233-238.
[30] GELLERT V F, HOLTZMAN S G. Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions[J]. Journal of Pharmacology and Experimental Therapeutics, 1978, 205(3): 536-546.
[31] 赵杨, 朱峰, 阎春霞, 等. 阿片类药物依赖建模和戒断症状评价方法研究进展[J]. 中国药物依赖性杂志, 2012, 21(6): 5.
[32] MALDONADO R, NEGUS S, KOOB G. Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta-and kappa-selective opioid antagonists[J]. Neuropharmacology, 1992, 31(12): 1231-1241.
[33] RASMUSSEN K, KENDRICK W T, KOGAN J H, et al. A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal[J]. Neuropsychopharmacology, 1996, 15(5): 497-505.
[34] ZHU H, HO K. NMDA-R1 antisense oligonucleotide attenuates withdrawal signs from morphine[J]. European Journal of Pharmacology, 1998, 352(2-3): 151-156.
[35] BAKHTAZAD A, VOUSOOGHI N, GARMABI B, et al. Evaluation of CART peptide level in rat plasma and CSF: Possible role as a biomarker in opioid addiction[J]. Peptides, 2016, 84: 1-6.
[36] DE GUGLIELMO G, KALLUPI M, SCUPPA G, et al. Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents[J]. Psychopharmacology, 2017, 234(2): 223-234.
[37] KALLUPI M, DE GUGLIELMO G, LARROSA E, et al. Exposure to passive nicotine vapor in male adolescent rats produces a withdrawal-like state and facilitates nicotine self-administration during adulthood[J]. European Neuropsychopharmacology, 2019, 29(11): 1227-1234.
[38] PELLOW S, CHOPIN P, FILE S E, et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat[J]. Journal of Neuroscience Methods, 1985, 14(3): 149-167.
[39] HALL C. Defecation and urination as measures of individual differences in emotionality in the rat[J]. Psychological Bulletin, 1934, 31: 604.
[40] ROUSSEAU J, VAN LOCHEM P, GISPEN W, et al. Classification of rat behavior with an image-processing method and a neural network[J]. Behavior Research Methods, Instruments, & Computers, 2000, 32(1): 63-71.
[41] HONG W, KENNEDY A, BURGOS-ARTIZZU X P, et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning[J]. Proceedings of the National Academy of Sciences, 2015, 112(38): 5351-5360.
[42] 毕瑛璞. 基于OptiTrack的大鼠行为高精度定量表征方法研究[D/OL]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.000697.
[43] 邵开. 小鼠行为学自动化分析系统[D/OL]. 哈尔滨: 哈尔滨工业大学, 2019. DOI: 10.27061/d.cnki.ghgdu.2019.001986.
[44] KENNEDY A. Computational behavior analysis takes on drug development[J]. Nature Neuroscience,2020, 23(11): 1314-1316.
[45] WILTSCHKO A B, TSUKAHARA T, ZEINE A, et al. Revealing the structure of pharmacobehavioral space through motion sequencing[J]. Nature Neuroscience, 2020, 23(11): 1433-1443.
[46] HUANG K, HAN Y, CHEN K, et al. A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping[J]. Nature Communications, 2021, 12(1): 1-14.
[47] JIANG Z, ZHOU F, ZHAO A, et al. Multi-View Mouse Social Behaviour Recognition With Deep Graphic Model[J]. IEEE Transactions on Image Processing, 2021, 30: E5490-E5504.
[48] SPINK A, TEGELENBOSCH R, BUMA M, et al. The EthoVision video tracking system—a tool for behavioral phenotyping of transgenic mice[J]. Physiology & Behavior, 2001, 73(5): 731-744.
[49] NOLDUS L P, SPINK A J, TEGELENBOSCH R A. EthoVision: a versatile video tracking system for automation of behavioral experiments[J]. Behavior Research Methods, Instruments, & Computers, 2001, 33(3): 398-414.
[50] GONZÁLEZ-GASPAR P, MACÍAS-CARBALLO M, CADENA-MEJÍA T, et al. Analixity: An open source, low-cost analysis system for the elevated plus maze test, based on computer vision techniques[J]. Behavioural Processes, 2021, 193: 104539.
[51] FRAME A K, LONE A, HARRIS R A, et al. Simple Protocol for Distinguishing Drug-induced Effects on Spatial Memory Acquisition, Consolidation and Retrieval in Mice Using the Morris Water Maze[J]. Bio-protocol, 9(18): e3376.
[52] VIT J P, FUCHS D T, ANGEL A, et al. Visual-stimuli Four-arm Maze test to Assess Cognition and Vision in Mice[J]. Bio-protocol, 2021, 11(22): e4234-e4234.
[53] ROUGHAN J, WRIGHT-WILLIAMS S, FLECKNELL P. Automated analysis of postoperative behaviour: assessment of HomeCageScan as a novel method to rapidly identify pain and analgesic effects in mice[J]. Laboratory Animals, 2009, 43(1): 17-26.
[54] GOULDING E H, SCHENK A K, JUNEJA P, et al. A robust automated system elucidates mouse home cage behavioral structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(52): 20575-20582.
[55] CLEMMENSEN C, FINAN B, FISCHER K, et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice[J]. EMBO Molecular Medicine, 2015, 7(3): 288-298.
[56] WEISSBROD A, SHAPIRO A, VASSERMAN G, et al. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment[J]. Nature Communications, 2013, 4(1): 1-10.
[57] MARSHALL I, WEINSTOCK M. Quantitative method for assessing one symptom of the withdrawal syndrome in mice after chronic morphine administration[J]. Nature, 1971, 234(5326): 223-224.
[58] 张磊, 刘鸿宇, 陈磊, 等. 阿片类药物依赖小鼠催促戒断中跳跃行为的自动计数装置[J]. 中国药物依赖性杂志, 2010(3): 4.
[59] KULBETH H J, FUKUDA S, BRENTS L K. Automated quantification of opioid withdrawal in neonatal rat pups using Ethovision® XT software[J]. Neurotoxicology and Teratology, 2021, 84: 106959.
[60] NIEHORSTER D C. Optic flow: A history[J]. i-Perception, 2021, 12(6): 1-49.
修改评论