中文版 | English
题名

以生活垃圾焚烧灰渣为原料的陶瓷膜制备与性能研究

其他题名
CERAMIC MEMBRANES PREPARED FROM MUNICIPAL SOLID WASTE INCINERATION RESIDUES AND THEIR PERFORMANCE
姓名
姓名拼音
LIU Yue
学号
12032363
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
唐圆圆
导师单位
环境科学与工程学院
论文答辩日期
2022-05-10
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

城市化的快速推进导致我国生活垃圾(以下简称垃圾)数量不断增加。垃圾经过焚烧后,减量减容的同时产生大量灰渣(底渣和飞灰)。目前对灰渣的资源化利用包括建筑材料、免烧砖、混凝土等方式,但以上方式仍会产生重金属浸出的问题。通过烧结处理,可以有效地稳定灰渣中的重金属,并且灰渣中含有大量的SiO2、Al2O3等陶瓷膜主要成分,因此考虑将底渣和飞灰通过烧结的方式制备成陶瓷膜。目前陶瓷膜原材料的紧缺导致成本上升,且纯物质陶瓷膜的烧结温度高达1500 ºC,限制了陶瓷膜在市场中的发展前景。

本课题创新地提出一种使用新型原材料制备陶瓷膜的方法,以生活垃圾焚烧底渣和飞灰作为原料制备陶瓷膜并进行表征和性能测试。使用产量大的灰渣,可以降低陶瓷膜的成本,并且引入混合体系,降低陶瓷膜烧结温度,减少能源消耗。

通过实验表明,底渣陶瓷膜和飞灰陶瓷膜在950 ºC即可制备,有效降低了烧结温度。底渣陶瓷膜的平均孔径为617.3 nm,孔隙率为44.2%;纯水通量为290 kg/(m2·h);对Pb2+Cr3+Cu2+Ni2+的分离率分别为99.99%84.22%79.96%39.56%;经过烧结后,AsPbCdCo等重金属的浸出浓度大幅度降低。飞灰陶瓷膜的平均孔径为1407.2 nm,孔隙率为29.3%;纯水通量为349 kg/(m2·h);对Cr3+的分离率为97%以上。通过吸附实验、孔径测试及文献调研,认为分离机理包括架桥效应、静电吸附、电荷吸附作用以及离子交换等。

本文实验证明,焚烧底渣和飞灰可以用于制备陶瓷膜,能够有效地降低陶瓷膜烧结温度和原材料的成本,减少能源消耗,为灰渣的资源化提供一种新的思路。

其他摘要

The rapid development of urbanization has led to continuous increase of municipal waste. Although incineration can reduce the volume and quantity of municipal waste, a large amount of residues (bottom ash and fly ash) are generated. At present, the incineration residues can be used as building materials, unburned bricks, concrete, etc., but cannot solve the problem caused by heavy metal leaching. Heavy metals can be stabilized via ceramic sintering. Meanwhile, silicon and aluminum oxides, as main components in the incineration residues, are always used as raw materials for ceramic membranes. Therefore, it is considered to prepare ceramic membranes from the incineration residues (bottom ash and fly ash) by sintering and stabilize heavy metals. Moreover, the sintering temperature is as high as 1500 ºC for the ceramic membranes from pure precursors, which caused excessive energy consumption and limited the development of ceramic membranes. If use ash as raw materials, it will reduce the cost of ceramic membranes. Because the import of a mixing system can reduce the sintering temperature and energy consumption of ceramic membranes. This study innovatively prepared ceramic membranes from municipal waste incineration bottom ash and fly ash. The experimental results showed that the ceramic membranes were synthesized at 950 ºC, when using bottom ash and fly ash as precursors, which effectively reduced the sintering temperature. The mean pore size of the bottom ash membrane was 617.3 nm, and the porosity was 44.2%. The water flux was 290 kg/(m2 ·h). The filtration rates of Pb2+, Cr3+, Cu2+, Ni2+ were 99.99%, 84.22%, 79.96%, 39.56%. After sintering, the leaching concentration of heavy metals such as As, Pb, Cd, Co, etc. was greatly reduced. The mean pore size of the fly ash membrane was 1407.2 nm, and the porosity was 29.3%. The water flux was 349 kg/(m2 ·h), with the Cr3+ filtration rate over 97%. The filtration mechanisms of the bottom ash was explained by bridging effect, electrostatic adsorption, charge adsorption and ion exchange.
This study proposed a strategy to beneficially utilize the municipal solid waste incineration residues (bottom ash and fly ash) as raw materials for ceramic membranes, which not only reduced the sintering temperature and the cost but also minimized heavy metal leachability after sintering processes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] DOU X, REN F, NGUYEN M Q, et al. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application[J]. Renewable and Sustainable Energy Reviews, 2017, 79:24-38.
[2] 郑世伟, 鲍建镇, 张茂, 等. 我国城市生活垃圾焚烧发电市场现状及前景[J]. 再生资源与循环经济, 2017, 10(04):19-22.
[3] 陈婉. “十四五”固废产业将迎来新跨越[J]. 环境经济, 2021(05):26-31+21.
[4] ALLEGRINI E, VADENBO C, BOLDRIN A, et al. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash[J]. J Environ Manage, 2015, 151:132-143.
[5] 何超, 艾浩, 王加军, 等. 城市生活垃圾焚烧底渣综合利用现状及建议[J]. 水泥, 2020(10):1-5.
[6] KAZA S. What a waste 2.0 : a global snapshot of solid waste management to 2050[M]. [Enhanced Credo edition]. Boston, Massachusetts :Credo Reference, 2019, 2019.
[7] HUANG B, GAN M, JI Z, et al. Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review[J]. Process Safety and Environmental Protection, 2022, 159:547-565.
[8] HU Y, ZHAO L, ZHU Y, et al. The fate of heavy metals and salts during the wet treatment of municipal solid waste incineration bottom ash[J]. Waste Manag, 2021, 121:33-41.
[9] 赵洁, 张远文, 张晓佳, 等. 垃圾焚烧飞灰资源化处理技术[J]. 辽宁化工, 2021, 50(10):1507-1510+1514.
[10] XIANG J, QIU J, LI Z, et al. Eco-friendly treatment for MSWI bottom ash applied to supplementary cementing: Mechanical properties and heavy metal leaching concentration evaluation[J]. Construction and Building Materials, 2022, 327:127012.
[11] WANG X, ZHU K, ZHANG L, et al. Mechanical property and heavy metal leaching behavior enhancement of municipal solid waste incineration fly ash during the pressure-assisted sintering treatment[J]. Journal of Environmental Management, 2022, 301:113856.
[12] ASIF M B, ZHANG Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418
[13] AL AANI S, MUSTAFA T N, HILAL N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade[J]. Journal of Water Process Engineering, 2020, 35:101241.
[14] LI Y, ZHAO X, LI Y, et al. Waste incineration industry and development policies in China[J]. Waste Management, 2015, 46:234-241.
[15] WANG Q, KO J H, LIU F, et al. Leaching characteristics of heavy metals in MSW and bottom ash co-disposal landfills[J]. J Hazard Mater, 2021, 416:126042.
[16] ALAM P, SINGH D, KUMAR S. Incinerated municipal solid waste bottom ash bricks: A sustainable and cost-efficient building material[J]. Materials Today: Proceedings, 2022, 49:1566-1572.
[17] 晁波阳, 高康宁, 申文斌. 生活垃圾焚烧飞灰处置途径分析[J]. 资源节约与环保, 2021(10):103-105.
[18] XUE Y, LIU X. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review[J]. Chemical Engineering Journal, 2021, 420
[19] MOHD HASAN M R, CHEW J W, JAMSHIDI A, et al. Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(3):209-244.
[20] GHOULEH Z, SHAO Y. Turning municipal solid waste incineration into a cleaner cement production[J]. Journal of Cleaner Production, 2018, 195:268-279.
[21] ARUMUGHAM T, KALEEKKAL N J, GOPAL S, et al. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review[J]. J Environ Manage, 2021, 293:112925.
[22] ZHU W, LIU Y, GUAN K, et al. Design and optimization of ceramic membrane structure: From the perspective of flux matching between support and membrane[J]. Ceramics International, 2021, 47(9):12357-12365.
[23] 姬文晋, 黄慧民, 温立哲, 等. 特种陶瓷成型方法[J]. 材料导报, 2007(09):9-12.
[24] 姚远, 同帜, 李倩, 等. 烧结制度对氧化铝陶瓷膜支撑体性能的影响[J]. 西安工程大学学报, 2021, 35(05):19-26.
[25] SANDHYA RANI S L, KUMAR R V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review[J]. Case Studies in Chemical and Environmental Engineering, 2021, 4
[26] PURNIMA M, ARUL MANIKANDAN N, PAKSHIRAJAN K, et al. Recovery of microalgae from its broth solution using kaolin based tubular ceramic membranes prepared with different binders[J]. Separation and Purification Technology, 2020, 250
[27] ALMANDOZ M C, PAGLIERO C L, OCHOA N A, et al. Composite ceramic membranes from natural aluminosilicates for microfiltration applications[J]. Ceramics International, 2015, 41(4):5621-5633.
[28] 柏其亚, 刘学文, 范益群, 等. 终端陶瓷膜法海水淡化预处理[J]. 膜科学与技术, 2008(05):86-89.
[29] ALOULOU W, ALOULOU H, KHEMAKHEM M, et al. Synthesis and characterization of clay-based ultrafiltration membranes supported on natural zeolite for removal of heavy metals from wastewater[J]. Environmental Technology & Innovation, 2020, 18:100794.
[30] ZHANG J, YAN M, SUN G, et al. Simultaneous removal of Cu(II), Cd(II), Cr(VI), and rhodamine B in wastewater using TiO2 nanofibers membrane loaded on porous fly ash ceramic support[J]. Separation and Purification Technology, 2021, 272:118888.
[31] NWOGU N C, ANYANWU E E, GOBINA E. An initial investigation of a nano-composite silica ceramic membrane for hydrogen gas separation and purification[J]. International Journal of Hydrogen Energy, 2016, 41(19):8228-8235.
[32] JANA S, PURKAIT M K, MOHANTY K. Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions[J]. Applied Clay Science, 2010, 47(3-4):317-324.
[33] MESTRE S, GOZALBO A, LORENTE-AYZA M M, et al. Low-cost ceramic membranes: A research opportunity for industrial application[J]. Journal of the European Ceramic Society, 2019, 39(12):3392-3407.
[34] ABDALLAH H, AMIN S K, ABO–ALMAGED H H, et al. Fabrication of ceramic membranes from nano–rosette structure high alumina roller kiln waste powder for desalination application[J]. Ceramics International, 2018, 44(7):8612-8622.
[35] MUKHERJEE D, KAR S, MANDAL A, et al. Immobilization of tannery industrial sludge in ceramic membrane preparation and hydrophobic surface modification for application in atrazine remediation from water[J]. Journal of the European Ceramic Society, 2019, 39(10):3235-3246.
[36] MOUIYA M, BOUAZIZI A, ABOURRICHE A, et al. Fabrication and characterization of a ceramic membrane from clay and banana peel powder: Application to industrial wastewater treatment[J]. Materials Chemistry and Physics, 2019, 227:291-301.
[37] SAJA S, BOUAZIZI A, ACHIOU B, et al. Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal[J]. Journal of the European Ceramic Society, 2020, 40(6):2453-2462.
[38] DAS D, NIJHUMA K, GABRIEL A M, et al. Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration[J]. Journal of the European Ceramic Society, 2020, 40(5):2163-2172.
[39] 梁琨. 以疏浚底泥为原料的高性能陶瓷膜制备[D]. 哈尔滨工业大学, 2019.
[40] WANG Z, XU Z, QIU D, et al. Beneficial utilization of Al/Si/O-rich solid wastes for environment-oriented ceramic membranes[J]. J Hazard Mater, 2021, 401:123427.
[41] WANG S, MA X-Y, WANG Y-L, et al. Preparation and desalination performance of porous planar cordierite membranes using industrial solid waste as main silica source[J]. Ceramics International, 2019, 45(5):5932-5940.
[42] 孙慧, 林强, 李佳佳, 等. 粉煤灰基陶瓷膜过滤苹果汁及其污染机理研究[J]. 食品工业科技, 2017, 38(07):216-220.
[43] 张学斌, 任祥军, 刘杏芹, 等. 几种非金属矿物基陶瓷分离膜的制备和表征[J]. 中国非金属矿工业导刊, 2004(05):53-55+62.
[44] 刘学文, 郑经堂, 李长海, 等. 陶瓷膜材料烧结技术研究进展[J]. 化学与生物工程, 2014, 31(05):7-9.
[45] LAM C H K, IP A W M, BARFORD J P, et al. Use of Incineration MSW Ash: A Review[J]. Sustainability, 2010, 2(7):1943-1968.
[46] LAGERSTRöM M, YTREBERG E. Quantification of Cu and Zn in antifouling paint films by XRF[J]. Talanta, 2021, 223:121820.
[47] 徐蕾, 袁会敏, 江荣风, 等. X射线衍射法在土壤粘粒矿物测定方面的研究进展[J]. 光谱学与光谱分析, 2020, 40(04):1227-1231.
[48] VOIGT C, HUBáLKOVá J, DITSCHERLEIN L, et al. Characterization of reticulated ceramic foams with mercury intrusion porosimetry and mercury probe atomic force microscopy[J]. Ceramics International, 2018, 44(18):22963-22975.
[49] VAITKUS A, GRAŽULYTĖ J, ŠERNAS O, et al. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers[J]. Construction and Building Materials, 2019, 212:456-466.
[50] CHENG C, FU H, WU J, et al. Study on the Preparation and Properties of Talcum-Fly Ash Based Ceramic Membrane Supports[J]. Membranes (Basel), 2020, 10(9)
[51] LIANG D, HUANG J, ZHANG Y, et al. Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery[J]. Journal of the European Ceramic Society, 2021, 41(11):5696-5710.
[52] MANNI A, ACHIOU B, KARIM A, et al. New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2020, 8(4)
[53] EL MAGUANA Y, ELHADIRI N, BENCHANAA M, et al. Low-cost and high-performance ceramic membrane from sugar industry waste: Characterization and optimization using experimental design[J]. Materials Today:Proceedings, 2022
[54] 田军龙, 高英俊, 罗志荣, 等. 陶瓷颗粒烧结致密化过程中微气孔的扩散与演化[J]. 广西科学, 2010, 17(04):332-336.
[55] 张小珍, 章婧, 周健儿, 等. SiO_2基多孔陶瓷膜支撑体的制备[J]. 硅酸盐通报, 2011, 30(06):1319-1322.
[56] BEQQOUR D, ACHIOU B, BOUAZIZI A, et al. Enhancement of microfiltration performances of pozzolan membrane by incorporation of micronized phosphate and its application for industrial wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2019, 7(2)
[57] MOURATIB R, ACHIOU B, KRATI M E, et al. Low-cost ceramic membrane made from alumina- and silica-rich water treatment sludge and its application to wastewater filtration[J]. Journal of the European Ceramic Society, 2020, 40(15):5942-5950.
[58] 王杰, 麻永林, 冯崴崴, 等. 硅铝比对La负载粉煤灰基多孔陶瓷滤料的影响[J]. 材料科学与工程学报, 2021, 39(06):994-998.
[59] 祁景玉, 肖淑敏, 高燕萍, 等. 混合型粗集料轻混凝土的微观结构(Ⅰ)[J]. 同济大学学报(自然科学版), 2001(08):946-953.
[60] CAO Y, LIU R, XU Y, et al. Effect of SiO2, Al2O3 and CaO on characteristics of lightweight aggregates produced from MSWI bottom ash sludge (MSWI-BAS)[J]. Construction and Building Materials, 2019, 205:368-376.
[61] TSAI C C, WANG K S, CHIOU I J. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge[J]. J Hazard Mater, 2006, 134(1-3):87-93.
[62] ANIS S F, HASHAIKEH R, HILAL N. Microfiltration membrane processes: A review of research trends over the past decade[J]. Journal of Water Process Engineering, 2019, 32
[63] SAINI P, BULASARA V K, REDDY A S. Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment[J]. Chemical Engineering Communications, 2019, 206(2):227-236.
[64] ANIS S F, HASHAIKEH R, HILAL N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review[J]. Desalination, 2019, 452:159-195.
[65] ELABBAS S, MANDI L, BERREKHIS F, et al. Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble[J]. Journal of Environmental Management, 2016, 166:589-595.
[66] FRAG E Y, MOHAMED N M, ELASHERY S E A. Exploitation of o-benzoyl benzoic acid as an efficient electroactive material for selective determination of Cr (III) ions in pharmaceutical samples and industrial waste water using carbon sensor[J]. Analytica Chimica Acta, 2021, 1154:338322.
[67] PU X, YAO L, YANG L, et al. Utilization of industrial waste lithium-silicon-powder for the fabrication of novel nap zeolite for aqueous Cu(II) removal[J]. Journal of Cleaner Production, 2020, 265:121822.
[68] THASNEEMA K K, DIPIN T, THAYYIL M S, et al. Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids[J]. Journal of Molecular Liquids, 2021, 323:114645.
[69] 李喜林, 王来贵, 赵奎, 等. 铬渣浸溶Cr(Ⅵ)溶解释放规律研究——以锦州堆场铬渣为例[J]. 地球与环境, 2013, 41(05):518-523.
[70] ZHAO C, LIN S, ZHAO Y, et al. Comprehensive understanding the transition behaviors and mechanisms of chlorine and metal ions in municipal solid waste incineration fly ash during thermal treatment[J]. Science of The Total Environment, 2022, 807:150731.
[71] KARLFELDT K, STEENARI B M. Assessment of metal mobility in MSW incineration ashes using water as the reagent[J]. Fuel, 2007, 86(12):1983-1993.
[72] CHIANG K-Y, HU Y-H. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process[J]. Waste Management, 2010, 30(5):831-838.
[73] GUO X, CAI X, SONG J, et al. Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol-gel process accompanied by phase separation[J]. New journal of chemistry, 2014, 38(12):5832-5839.
[74] CHEN Y, WANG X, BAO Y. Study on a new green phosphor Ca12Al14O32Cl2: Tb3+ derived from Tb-doped Ca-Al layered double hydroxide[J]. Current Applied Physics, 2017, 17(1):78-84.
[75] YANG G, REN Q, ZHOU L, et al. Effect of Si/Al additives on Cl fate during MSWI fly ash thermal treating process[J]. Fuel Processing Technology, 2022, 231:107230.
[76] ZOU D, FAN W, XU J, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions[J]. Journal of Membrane Science, 2021, 621:118954.
[77] JEDIDI I, KHEMAKHEM S, SAïDI S, et al. Preparation of a new ceramic microfiltration membrane from mineral coal fly ash: Application to the treatment of the textile dying effluents[J]. Powder Technology, 2011, 208(2):427-432.
[78] BELGADA A, ACHIOU B, ALAMI YOUNSSI S, et al. Low-cost ceramic microfiltration membrane made from natural phosphate for pretreatment of raw seawater for desalination[J]. Journal of the European Ceramic Society, 2021, 41(2):1613-1621.
[79] QI T, CHEN X, SHI W, et al. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures[J]. Separation and Purification Technology, 2021, 278:119589.
[80] HUANG Y, LIU H, WANG Y, et al. Industrial application of ceramic ultrafiltration membrane in cold-rolling emulsion wastewater treatment[J]. Separation and Purification Technology, 2022, 289:120724.
[81] 谢明强, 魏晓伟. 陶瓷分离膜的制备、过滤机理和应用研究[J]. 山东陶瓷, 2006(06):29-34.
[82] DE ANGELIS L, DE CORTALEZZI M M F. Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling[J]. Separation and Purification Technology, 2013, 118:762-775.
[83] 曾坚贤, 邢卫红, 徐南平. 陶瓷膜处理肌苷发酵液的研究[J]. 膜科学与技术, 2004(03):23-27.
[84] FANE A G, TANG C Y, WANG R. 4.11 - Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis[M]//WILDERER P. Treatise on Water Science. Oxford; Elsevier. 2011:301-335.
[85] 周健儿, 吴汉阳. 无机陶瓷分离膜的研究与应用Ⅲ——膜过滤机理简述[J]. 中国陶瓷工业, 2002(05):33-37.
[86] SCHOPF R, DESCH F, SCHMITZ R, et al. Effect of flow channel number in multi-channel tubular ceramic microfiltration membranes on flux and small protein transmission in milk protein fractionation[J]. Journal of Membrane Science, 2022, 644:120153.
[87] ZHAO C, YE Y, CHEN X, et al. Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater[J]. Chinese Journal of Chemical Engineering, 2022, 41:267-277.
[88] 王姣, 姜忠义, 吴洪, 等. 中药有效成分和有效部位分离用膜[J]. 中国中药杂志, 2005(03):6-11.
[89] 刘树元, 杨焱明, 刘庆, 等. 多孔陶瓷材料在环境工程中的应用[J]. 济南大学学报(自然科学版), 2008(01):66-71.
[90] CHA M, BOO C, PARK C. Simultaneous retention of organic and inorganic contaminants by a ceramic nanofiltration membrane for the treatment of semiconductor wastewater[J]. Process Safety and Environmental Protection, 2022, 159:525-533.
[91] NAN M-N, BI Y, QIANG Y, et al. Electrostatic adsorption and removal mechanism of ochratoxin A in wine via a positively charged nano-MgO microporous ceramic membrane[J]. Food Chemistry, 2022, 371:131157.
[92] SZYMCZYK A, FIEVET P, MULLET M, et al. Comparison of two electrokinetic methods – electroosmosis and streaming potential – to determine the zeta-potential of plane ceramic membranes[J]. Journal of Membrane Science, 1998, 143(1):189-195.
[93] ZHAO Y, XING W, XU N, et al. Effects of inorganic electrolytes on zeta potentials of ceramic microfiltration membranes[J]. Separation and Purification Technology, 2005, 42(2):117-121.
[94] ZHANG L, LI N, ZHU M, et al. Nano-structured surface modification of micro-porous ceramic membrane with positively charged nano-Y2O3 coating for organic dyes removal[J]. RSC advances, 2015, 5(98):8643-8649.
[95] WEGMANN M, MICHEN B, GRAULE T. Nanostructured surface modification of microporous ceramics for efficient virus filtration[J]. Journal of the European Ceramic Society, 2008, 28(8):1603-1612.
[96] 王佳蕾, 赵地顺, 陈娟, 等. 沸石的性能及在废水治理中的应用[J]. 河北化工, 2007(04):58-62.
[97] ĆURKOVIĆ L, CERJAN-STEFANOVIĆ Š, FILIPAN T. Metal ion exchange by natural and modified zeolites[J]. Water Research, 1997, 31(6):1379-1382.

所在学位评定分委会
环境科学与工程学院
国内图书分类号
X705
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335716
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
刘越. 以生活垃圾焚烧灰渣为原料的陶瓷膜制备与性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032363-刘越-环境科学与工程学(6095KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘越]的文章
百度学术
百度学术中相似的文章
[刘越]的文章
必应学术
必应学术中相似的文章
[刘越]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。