[1] 何慧霞, 魏桂英, 武森, 等. 智能制造评价理论研究现状及未来展望[J/OL]. 中国工程科学,2022: 1-8. https://kns.cnki.net/kcms/detail/11.4421.G3.20220217.1544.044.html.
[2] 孙毅, 罗穆雄. 美国智能制造的发展及启示[J]. 中国科学院院刊, 2021, 36: 1316-1325.
[3] 周勇, 赵聃, 刘志迎. 我国智能制造发展实践及突破路径研究[J/OL]. 中国工程科学, 2021:1-8. https://kns.cnki.net/kcms/detail/11.4421.g3.20211103.1516.006.html.
[4] 修昭远. 无线工业物联网协议互通研究与实践[D]. 北方工业大学, 2020.
[5] 余晓晖, 刘默, 蒋昕昊, 等. 工业互联网体系架构 2.0[J]. 计算机集成制造系统, 2019, 25:2983-2996.
[6] 余晓晖, 张恒升, 彭炎, 等. 工业互联网网络连接架构和发展趋势[J]. 中国工程科学, 2018,20: 79-84.
[7] 李东. 震网病毒事件浅析及工控安全防护能力提升启示[J]. 网络安全技术与应用, 2019:9-10+24.
[8] FIGUEROA S, AÑORGA J, ARRIZABALAGA S. A survey of iiot protocols: A measure of vulnerability risk analysis based on CVSS[J]. ACM Comput. Surv., 2020, 53(2): 44:1-44:53.
[9] VARGAS H E, CASELLI M, PETER A. Automatic deployment of specification-based intrusion detection in the bacnet protocol[C]//Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy, Dallas, TX, USA, November 3, 2017. 2017: 25-36.
[10] LONGARI S, PENCO M, CARMINATI M, et al. Copycan: An error-handling protocol based intrusion detection system for controller area network[C]//Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy, CPS-SPC@CCS 2019, London, UK, November 11, 2019. 2019: 39-50.
[11] SHENG C, YAO Y, FU Q, et al. A cyber-physical model for SCADA system and its intrusion detection[J]. Computer Networks, 2021, 185: 107677.
[12] ZOLANVARI M, TEIXEIRA M A, GUPTA L, et al. Machine learning-based network vulnerability analysis of industrial internet of things[J]. IEEE Internet of Things Journal, 2019, 6(4): 6822-6834.
[13] NEGI R, KUMAR P, GHOSH S, et al. Vulnerability assessment and mitigation for industrial critical infrastructures with cyber physical test bed[C]//IEEE International Conference on Industrial Cyber Physical Systems, ICPS 2019, Taipei, Taiwan, May 6-9, 2019. 2019: 145-152.
[14] LV W Y, XIONG J W, SHI J Q, et al. A deep convolution generative adversarial networks based fuzzing framework for industry control protocols[J]. Journal of Intelligent Manufacturing, 2021, 32(2): 441-457.
[15] TYCHALAS D, MANIATAKOS M. IFFSET: in-field fuzzing of industrial control systems using system emulation[C]//2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020. 2020: 662-665.
[16] ZHAO H, LI Z H, WEI H S, et al. Seqfuzzer: An industrial protocol fuzzing framework from a deep learning perspective[C]//12th IEEE Conference on Software Testing, Validation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019. 2019: 59-67.
[17] HUANG D J, SHI X F, ZHANG W A. False data injection attack detection for industrial control systems based on both time- and frequency-domain analysis of sensor data[J]. IEEE Internet of Things Journal, 2021, 8(1): 585-595.
[18] KHALED A, OUCHANI S, TARI Z, et al. Assessing the severity of smart attacks in industrial cyber-physical systems[J]. ACM Transactions on Cyber-Physical Systems, 2021, 5(1): 10:1-10:28.
[19] ZHOU H P, SHEN S G, LIU J H. Malware propagation model in wireless sensor networks under attack-defense confrontation[J]. Computer Communication, 2020, 162: 51-58.
[20] HADEM P, SAIKIA D K, MOULIK S. An sdn-based intrusion detection system using SVM with selective logging for IP traceback[J]. Computer Networks, 2021, 191: 108015.
[21] CABALLERO J, YIN H, LIANG Z K, et al. Polyglot: automatic extraction of protocol message format using dynamic binary analysis[C]//Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. 2007: 317-329.
[22] WONDRACEK G, COMPARETTI P M, KRÜGEL C, et al. Automatic network protocol analysis[C]//Proceedings of the Network and Distributed System Security Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th February 2008. 2008.
[23] LIN Z Q, JIANG X X, XU D Y, et al. Automatic protocol format reverse engineering through context-aware monitored execution[C]//Proceedings of the Network and Distributed System Security Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th February 2008. 2008.
[24] CABALLERO J, POOSANKAM P, KREIBICH C, et al. Dispatcher: enabling active botnet infiltration using automatic protocol reverse-engineering[C]//Proceedings of the 2009 ACM Conference on Computer and Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009. 2009: 621-634.
[25] KLEBER S, MAILE L, KARGL F. Survey of protocol reverse engineering algorithms: Decomposition of tools for static traffic analysis[J]. IEEE Communication Survey and Tutorials, 2019, 21(1): 526-561.
[26] BEDDOE M A. Network protocol analysis using bioinformatics algorithms[J]. Toorcon, 2004.
[27] NEEDLEMAN S B, WUNSCH C D. A general method applicable to the search for similarities in the amino acid sequence of two proteins[J]. Journal of molecular biology, 1970, 48(3): 443-453.
[28] WATERMAN M S, SMITH T F, KATCHER H L. Algorithms for restriction map comparisons [J/OL]. Nucleic Acids Research, 1984, 12(1): 237-242. https://doi.org/10.1093/nar/12.1Part1.237.
[29] CUI W D, PAXSON V, WEAVER N, et al. Protocol-independent adaptive replay of application dialog[C/OL]//Proceedings of the Network and Distributed System Security Symposium, NDSS 2006, San Diego, California, USA. 2006. https://www.ndss-symposium.org/ndss2006/protocol-independent-adaptive-replay-application-dialog/.
[30] CUI W D, KANNAN J, WANG H J. Discoverer: Automatic protocol reverse engineering from network traces[C/OL]//Proceedings of the 16th USENIX Security Symposium, Boston, MA, USA, August 6-10, 2007. 2007. https://www.usenix.org/conference/16th-usenix-security-sym posium/discoverer-automatic-protocol-reverse-engineering-network.
[31] WHALEN S, BISHOP M, CRUTCHFIELD J P. Hidden markov models for automated protocol learning[C/OL]//Security and Privacy in Communication Networks - 6th Iternational ICST Conference, SecureComm 2010, Singapore, September 7-9, 2010. Proceedings. 2010: 415-428. https://doi.org/10.1007/978-3-642-16161-2_24.
[32] LI H F, SHUAI B, WANG J, et al. Protocol reverse engineering using LDA and association analysis[C/OL]//11th International Conference on Computational Intelligence and Security, CIS 2015, Shenzhen, China, December 19-20, 2015. 2015: 312-316. https://doi.org/10.1109/CIS. 2015.83.
[33] BERMUDEZ I, TONGAONKAR A, ILIOFOTOU M, et al. Automatic protocol field inference for deeper protocol understanding[C/OL]//Proceedings of the 14th IFIP Networking Conference, Networking 2015, Toulouse, France, 20-22 May, 2015. 2015: 1-9. https://doi.org/10.1109/IFIPNetworking.2015.7145307.
[34] KLEBER S, KOPP H, KARGL F. NEMESYS: network message syntax reverse engineering by analysis of the intrinsic structure of individual messages[C/OL]//12th USENIX Workshop on Offensive Technologies, WOOT 2018, Baltimore, MD, USA, August 13-14, 2018. 2018. https://www.usenix.org/conference/woot18/presentation/kleber.
[35] BOSSERT G, GUIHÉRY F, HIET G. Towards automated protocol reverse engineering using semantic information[C]//9th ACM Symposium on Information, Computer and Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014. 2014: 51-62.
[36] POHL J, NOACK A. Universal radio hacker: A suite for analyzing and attacking stateful wireless protocols[C/OL]//12th USENIX Workshop on Offensive Technologies, WOOT 2018, Baltimore, MD, USA, August 13-14, 2018. 2018. https://www.usenix.org/conference/woot18/presentation/pohl.
[37] POHL J, NOACK A. Automatic wireless protocol reverse engineering[C/OL]//13th USENIX Workshop on Offensive Technologies, WOOT 2019, Santa Clara, CA, USA, August 12-13, 2019. 2019. https://www.usenix.org/conference/woot19/presentation/pohl.
[38] LáDI G, BUTTYáN L, HOLCZER T. Message format and field semantics inference for binary protocols using recorded network traffic[C]//2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). 2018: 1-6.
[39] YE Y P, ZHANG Z, WANG F, et al. Netplier: Probabilistic network protocol reverse engineering from message traces[C/OL]//28th Annual Network and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. 2021. https://www.ndss-symposium.org/ndss-paper/netplier-probabilistic-network-protocol-reverse-engineering-from-message-traces/.
[40] TAO S Y, YU H Y, LI Q. Bit-oriented format extraction approach for automatic binary protocol reverse engineering[J/OL]. IET Communication, 2016, 10(6): 709-716. https://doi.org/10.1049/iet-com.2015.0797.
[41] 张蔚瑶, 张磊, 毛建瓴, 等. 未知协议的逆向分析与自动化测试[J]. 计算机学报, 2020, 43:653-667.
[42] HE Y H, SHEN J L, XIAO K, et al. A sparse protocol parsing method for iiot protocols based on HMM hybrid model[C/OL]//2020 IEEE International Conference on Communications, ICC 2020, Dublin, Ireland, June 7-11, 2020. 2020: 1-6. https://doi.org/10.1109/ICC40277.2020.9149040.
[43] WANG X W, LV K Z, LI B. IPART: an automatic protocol reverse engineering tool based on global voting expert for industrial protocols[J/OL]. International Journal of Parallel, Emergent and Distributed Systems, 2020, 35(3): 376-395. https://doi.org/10.1080/17445760.2019.1655740.
[44] HEI X H, BAI B B, WANG Y C, et al. Feature extraction optimization for bitstream communication protocol format reverse analysis[C/OL]//18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications / 13th IEEE International Conference On Big Data Science And Engineering, TrustCom/BigDataSE 2019, Rotorua, New Zealand, August 5-8, 2019. 2019: 662-669. https://doi.org/10.1109/TrustCom/BigDataSE.2019.00094.
[45] LUO X, CHEN D, WANG Y J, et al. A type-aware approach to message clustering for protocol reverse engineering[J/OL]. Sensors, 2019, 19(3): 716. https://doi.org/10.3390/s19030716.
[46] 张洪泽, 洪征, 王辰, 等. 基于闭合序列模式挖掘的未知协议格式推断方法[J]. 计算机科学, 2019, 46: 80-89.
[47] KLEBER S, VAN DER HEIJDEN R W, KARGL F. Message type identification of binary network protocols using continuous segment similarity[C/OL]//39th IEEE Conference on Computer Communications, INFOCOM 2020, Toronto, ON, Canada, July 6-9, 2020. 2020: 2243-2252. https://doi.org/10.1109/INFOCOM41043.2020.9155275.
[48] WANG Y P, LI X J, MENG J, et al. Biprominer: Automatic mining of binary protocol features [C/OL]//12th International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2011, Gwangju, Korea, October 20-22, 2011. 2011: 179-184. https://doi.org/10.1109/PDCAT.2011.25.
[49] WANG Y P, YUN X C, SHAFIQ M Z, et al. A semantics aware approach to automated reverse engineering unknown protocols[C/OL]//20th IEEE International Conference on Network Protocols, ICNP 2012, Austin, TX, USA, October 30 - Nov. 2, 2012. 2012: 1-10. https://doi.org/10.1109/ICNP.2012.6459963.
[50] LUO J Z, YU S Z. Position-based automatic reverse engineering of network protocols[J/OL]. Journal of Network and Computer Applications, 2013, 36(3): 1070-1077. https://doi.org/10.1016/j.jnca.2013.01.013.
[51] CAI J, LUO J Z, LEI F Y. Analyzing network protocols of application layer using hidden semi-markov model[J/OL]. Mathematical Problems in Engineering, 2016: 1024-123X. https://doi.org/10.1155/2016/9161723.
[52] XIAO M M, ZHANG S L, LUO Y P. Automatic network protocol message format analysis [J/OL]. Journal of Intelligent and Fuzzy Systems, 2016, 31(4): 2271-2279. https://doi.org/10.3233/JIFS-169067.
[53] 侯方杰, 王雷, 王嵩, 等. 基于位置的自动化网络流协议逆向分析方法[J/OL]. 计算机工程,2019, 45: 84-87. https://kns.cnki.net/kcms/detail/31.1289.TP.20180626.1732.006.html.
[54] LEITA C, MERMOUD K, DACIER M. Scriptgen: an automated script generation tool for honeyd[C/OL]//21st Annual Computer Security Applications Conference (ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA. 2005: 203-214. https://doi.org/10.1109/CSAC.2005.49.
[55] SHEVERTALOV M, MANCORIDIS S. A reverse engineering tool for extracting protocols of networked applications[C/OL]//14th Working Conference on Reverse Engineering (WCRE 2007), 28-31 October 2007, Vancouver, BC, Canada. 2007: 229-238. https://doi.org/10.1109/WCRE.2007.6.
[56] TRIFILO A, BURSCHKA S, BIERSACK E W. Traffic to protocol reverse engineering[C/OL]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, Canada, July 8-10, 2009. 2009: 1-8. https://doi.org/10.1109/CISDA.2009.5356565.
[57] GORBUNOV S, ROSENBLOOM A. Autofuzz: Automated network protocol fuzzing framework[C]//International Journal of Computer Science and Network Security, August, 2010. 2010.
[58] ANTUNES J, NEVES N F, VERÍSSIMO P. Reverse engineering of protocols from network traces[C/OL]//18th Working Conference on Reverse Engineering, WCRE 2011, Limerick, Ireland, October 17-20, 2011. 2011: 169-178. https://doi.org/10.1109/WCRE.2011.28.
[59] KRUEGER T, GASCON H, KRÄMER N, et al. Learning stateful models for network honeypots [C/OL]//Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence, AISec 2012, Raleigh, NC, USA, October 19, 2012. 2012: 37-48. https://doi.org/10.1145/2381896.2381904.
[60] WANG Y P, ZHANG Z B, YAO D F, et al. Inferring protocol state machine from network traces: A probabilistic approach[C/OL]//Applied Cryptography and Network Security - 9th International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings. 2011: 1-18. https://doi.org/10.1007/978-3-642-21554-4_1.
[61] XIAO M M, LUO Y P. Automatic protocol reverse engineering using grammatical inference [J/OL]. Journal of Intelligent and Fuzzy Systems, 2017, 32(5): 3585-3594. https://doi.org/10.3233/JIFS-169294.
[62] DUCHÊNE J, GUERNIC C L, ALATA E, et al. State of the art of network protocol reverse engineering tools[J]. Journal of Computer Virology and Hacking Techniques, 2018, 14(1): 53-68.
[63] LIN Y D, LAI Y K, BUI Q T, et al. Refsm: Reverse engineering from protocol packet traces to test generation by extended finite state machines[J]. Journal of Network and Computer Applications, 2020, 171: 102819.
[64] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J/OL]. Journal of Machine Learning Research, 2003, 3: 993-1022. http://jmlr.org/papers/v3/blei03a.html.
[65] JOYCE J M. Kullback-leibler divergence[M/OL]//International Encyclopedia of Statistical Science. 2011: 720-722. https://doi.org/10.1007/978-3-642-04898-2_327.
[66] P. J. The distribution of the flora in the alpine zone[J]. New Phytologist, 1912, 11(2): 37-50.
[67] YU S Z. Hidden semi-markov models[J/OL]. Artificial Intelligence, 2010, 174(2): 215-243. https://doi.org/10.1016/j.artint.2009.11.011.
[68] SAITTA L, SEBAG M. Grammatical inference[M/OL]//Encyclopedia of Machine Learning and Data Mining. 2017: 569-570. https://doi.org/10.1007/978-1-4899-7687-1_115.
[69] RIECK K, WRESSNEGGER C, BIKADOROV A. Sally: a tool for embedding strings in vector spaces[J]. Journal of Machine Learning Research, 2012, 13: 3247-3251.
[70] BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]//Noise reduction in speech processing. Springer, 2009: 1-4.
[71] LÜKE H D, SCHOTTEN H D, HADINEJAD-MAHRAM H. Binary and quadriphase sequences with optimal autocorrelation properties: a survey[J]. IEEE Transactions on Information Theory, 2003, 49(12): 3271-3282.
[72] DURBIN R, EDDY S R, KROGH A, et al. Biological sequence analysis: Probabilistic models of proteins and nucleic acids[M]. Cambridge University Press, 1998.
[73] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C/OL]//Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 2017: 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
[74] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C/OL]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). 2019: 4171-4186. https://doi.org/10.18653/v1/n19-1423.
[75] REIMERS N, GUREVYCH I. Sentence-bert: Sentence embeddings using siamese bertnetworks[C/OL]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. 2019: 3980-3990. https://doi.org/10.18653/v1/D19-1410.
[76] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C/OL]//3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015. http://arxiv.org/abs/1409.0473.
[77] THAKUR N, REIMERS N, DAXENBERGER J, et al. Augmented SBERT: data augmentation method for improving bi-encoders for pairwise sentence scoring tasks[C/OL]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021. 2021: 296-310. https://doi.org/10.18653/v1/2021.naacl-main.28.
[78] SANH V, DEBUT L, CHAUMOND J, et al. Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter[J/OL]. CoRR, 2019, abs/1910.01108. http://arxiv.org/abs/1910.01108.
[79] LIU Y H, OTT M, GOYAL N, et al. Roberta: A robustly optimized BERT pretraining approach [J/OL]. CoRR, 2019, abs/1907.11692. http://arxiv.org/abs/1907.11692.
[80] MIKOLOV T, KARAFIÁT M, BURGET L, et al. Recurrent neural network based language model[C/OL]//INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010. 2010: 1045-1048. http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html.
[81] JÓZEFOWICZ R, VINYALS O, SCHUSTER M, et al. Exploring the limits of language modeling[J/OL]. CoRR, 2016, abs/1602.02410. http://arxiv.org/abs/1602.02410.
[82] WANG K X, REIMERS N, GUREVYCH I. TSDAE: using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning[C/OL]//Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021. 2021: 671-688. https://doi.org/10.18653/v1/2021.finding s-emnlp.59.
[83] GAO T Y, YAO X C, CHEN D Q. Simcse: Simple contrastive learning of sentence embeddings[C/OL]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. 2021: 6894-6910. https://doi.org/10.18653/v1/2021.emnlp-main.552.
[84] CARLSSON F, GYLLENSTEN A C, GOGOULOU E, et al. Semantic re-tuning with contrastive tension[C/OL]//9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 2021. https://openreview.net/forum?id=Ov_sMNau-PF.
修改评论