中文版 | English
题名

类钙钛矿发光材料的合成及其用于重金属离子荧光传感研究

其他题名
Synthesis of luminescent perovskite analogs and their applications as heavy metal ions fluorescent sensor
姓名
姓名拼音
MA Jingyi
学号
11930491
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
陈洪
导师单位
环境科学与工程学院
论文答辩日期
2022-05-11
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       卤化物钙钛矿材料及其类似物, 作为一类性能优异的发光材料近几年受到科学家们的广泛关注。 这类材料的发光特性往往可通过材料组分和晶体结构调控。 近年来, 新型发光钙钛矿材料的结构设计及合成一直是发光、太阳能电池等领域的研究热点。 本课题以卤化物为原料, 合成出多种不同结构的类钙钛矿发光材料, 解析了其晶体结构, 并深入研究了它们的发光机理。 此外, 还探讨了发光卤化物类钙钛矿材料, 在荧光探测重金属离子方面的应用。 具体研究内容包括:
       一是设计合成了两种发光卤化物类钙钛矿材料, 并评估其光学性能。本课题成功合成了 Cs3CeBr6 和 Cs8AgCe3Br18 两种发光类钙钛矿材料, 两种材料均具有优异的可见光波段荧光发射性能。 其中, Cs3CeBr6 具有高达97.76%的荧光量子效率。 利用光学平台测试和第一性原理计算, 本文进一步阐明了该系列材料的发光机理, 发现两种化合物的发光, 主要来源于孤立的[CeBr6]3-八面体贡献, 其局部八面体聚集方式不同, 导致了其荧光发射峰位置有显著差异。
       二是评估类钙钛矿结构发光材料在重金属离子检测方面的应用。 利用发光卤化物 Ruddlesden-Popper 相类钙钛矿材料在重金属溶液中易于原位生成, 形成的器件荧光信号强度随着重金属浓度变化而改变的特点。 利用紫外-可见吸收光谱、 光致发光光谱、 荧光显微镜等技术手段, 发现在一定范围内, 所制备的传感器的荧光强度随重金属离子浓度变化而线性相关。基于此原理, 我们设计开发了用于检测水体重金属铅离子( Pb2+) 浓度的荧光传感器。 并利用光学测试和第一性原理计算, 详细阐明了传感器材料的工作机理。 该传感器能够对不同程度铅污染环境水体进行定性和定量探测。

其他摘要

Halide perovskite materials and their analogues have been widely studied for their excellent performance as luminescent materials. The luminescence properties of these materials can be finely tuned via the composition or structure of the materials. In recent years, the structure design and synthesis of new luminescent perovskite materials have attracted enormous attention in luminescence and solar cells. In this thesis, three kinds of halide perovskite structure analogues were synthesized, and their luminescence mechanism was carefully studied. In addition, the application of luminescent halide perovskite as fluorescent sensors for heavy metal ions detection was also discussed. Specific research contents include the following two parts:

In the first part of this thesis, Cs3CeBr6 and Cs8AgCe3Br18 luminescent perovskite analogues were successfully synthesized. Both materials had excellent fluorescence emission performance in the visible light region. Especially for Cs3CeBr6, the photoluminescence quantum efficiency was up to 97.76%. The luminescence mechanism of the new luminescent materials was elucidated by optical platform characterization and density function theory (DFT) calculation. It was found that the intrinsic luminescence capability of these two compounds resulted from the isolated [CeBr6]3- octahedra. The difference in the connection mode of octahedra led to a significant difference in photoluminescence emission.

In the second part of this thesis, we evaluated the application of luminescent perovskite analogues in heavy metal ions detection. The in-situ formation of light-emitting Ruddlesden-Popper phase halide perovskite materials with different concentrations of heavy metal solutions led to the fluorescent signal change. UV-Visible absorption spectrum, photoluminescence spectrum and fluorescence microscopy were used to obtain the linear correlation of the fluorescence intensity and heavy metal ions concentrations, making it a promising fluorescence sensor for heavy metal Pb2+ detection in water. The luminescent mechanism of the sensor was elucidated by employing optical measurement and density function theory calculation. The sensor can be used for the quantitive and qualitative detection of different levels of lead pollution in environmental water.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] GUMPU M B, SETHURAMAN S, KRISHNAN U M, et al. A Review on Detection of Heavy Metal Ions in Water - An Electrochemical Approach[J]. Sensors Actuators B Chem., 2015, 213: 515–533.
[2] KIM H N, REN W X, KIM J S, et al. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions[J]. Chem. Soc. Rev., 2012, 41(8): 3210–3244.
[3] 环境保护部, 国家质量监督检验检疫总局. 中华人民共和国国家标准-铅、锌工业污染物排放标准: GB 25466-2010[S].
[4] PARSONS P J, SLAVIN W. A Rapid Zeeman Graphite Furnace Atomic Absorption Spectrometric Method for the Determination of Lead in Blood[J]. Spectrochim. Acta Part B At. Spectrosc., 1993, 48(6–7): 925–939.
[5] POHL P. Determination of Metal Content in Honey by Atomic Absorption and Emission Spectrometries[J]. TrAC - Trends Anal. Chem., 2009, 28(1): 117–128.
[6] A. SALONIA J, G. WUILLOUD R, A. GÁQUEZ J, et al. Determination of Lead in Tap Water by ICP-AES with Flow-Injection on-Line Adsorption Preconcentration Using a Knotted Reactor and Ultrasonic Nebulization[J]. J. Anal. At. Spectrom., 2002, 14(8): 1239–1243.
[7] FELDMAN B J, OSTERLOH J D, HATA B H, et al. Determination of Lead in Blood by Square Wave Anodic Stripping Voltammetry at a Carbon Disk Ultramicroelectrode[J]. Anal. Chem., 1994, 66(13): 1983–1987.
[8] KAUR B, KAUR N, KUMAR S. Colorimetric Metal Ion Sensors–A Comprehensive Review of the Years 2011–2016[J]. Coord. Chem. Rev., 2018, 358: 13–69.
[9] RASHEED T, BILAL M, NABEEL F, et al. Fluorescent Sensor Based Models for the Detection of Environmentally-Related Toxic Heavy Metals[J]. Sci. Total Environ., 2018, 615: 476–485.
[10] OEHME I, WOLFBEIS O S. Optical Sensors for Determination of Heavy Metal Ions[J]. Mikrochim. Acta, 1997, 126(3): 177–192.
[11] BASABE DESMONTS L, REINHOUDT D N, CREGO CALAMA M. Design of Fluorescent Materials for Chemical Sensing[J]. Chem. Soc. Rev., 2007, 36(1995): 993–1017.
[12] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises[J]. J. Am. Chem. Soc., 2019, 141(3): 1171–1190.
[13] KIM H, HAN J S, CHOI J, et al. Halide Perovskites for Applications beyond Photovoltaics[J]. Small Methods, 2018, 2(3): 1700310.
[14] HOEFLER S F, TRIMMEL G. Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: A Review[J]. Monatsh. Chem., 2017, 148(5): 795–826.
[15] JENA A K, KULKARNI A, MIYASAKA T. Halide Perovskite Photovoltaics: Background , Status , and Future Prospects[J]. Chem. Rev., 2019, 119(5): 3036–3103.
[16] MITZI D B, WANG S, FEILD C A, et al. Conducting Layered Organic-Inorganic Halides Containing <110>-Oriented Perovskite Sheets.[J]. Science, 1995, 267(5203): 1473–1476.
[17] GRABOWSKA E. Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties-A Review[J]. Appl. Catal. B Environ., 2016, 186: 97–126.
[18] XIAO Z, SONG Z, YAN Y. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives[J]. Adv. Mater., 2019, 31(47): 1–22.
[19] ZENG Z, XU Y, ZHANG Z, et al. Rare-Earth-Containing Perovskite Nanomaterials: Design, Synthesis, Properties and Applications[J]. Chem. Soc. Rev., 2020, 49(4): 1109–1143.
[20] ERA M, MORIMOTO S, TSUTSUI T, et al. Organic-Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H 4NH3)2PbI4[J]. Appl. Phys. Lett., 1994, 65(6): 676–678.
[21] TAN Z, MOGHADDAM R S, LAI M L, et al. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite[J]. Nat. Nanotechnol., 2014, 9: 687–692.
[22] KAR S, JAMALUDIN N F, YANTARA N, et al. Recent Advancements and Perspectives on Light Management and High Performance in Perovskite Light-Emitting Diodes[J]. Nanophotonics, 2021, 10(8): 2103–2143.
[23] ZHOU C, LIN H, TIAN Y, et al. Luminescent Zero-Dimensional Organic Metal Halide Hybrids with near-Unity Quantum Efficiency[J]. Chem. Sci., 2018, 9(3): 586–593.
[24] SUN S, LU M, GAO X, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications[J]. Adv. Sci., 2021, 8(24): 1–23.
[25] H.L. W. Uber Die Casium-Und Kalium-Bleihalogenide[J]. Z. Anorg. Allg. Chem., 1893(2): 195–210.
[26] SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids[J]. ACS Energy Lett., 2016, 1(4): 840–845.
[27] HU M, GE C, YU J, et al. Mechanical and Optical Properties of Cs4BX6 (B = Pb, Sn; X = Cl, Br, I) Zero-Dimension Perovskites[J]. J. Phys. Chem. C, 2017, 121(48): 27053–27058.
[28] BENIN B M, DIRIN D N, MORAD V, et al. Highly Emissive Self-Trapped Excitons in Fully Inorganic Zero-Dimensional Tin Halides[J]. Angew. Chem. Int. Ed., 2018, 57(35): 11329–11333.
[29] JUN T, SIM K, IIMURA S, et al. Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure[J]. Adv. Mater., 2018, 30(43): 1–6.
[30] CHENG P, FENG L, LIU Y, et al. Doped Zero-Dimensional Cesium Zinc Halides for High-Efficiency Blue Light Emission[J]. Angew. Chem. Int. Ed., 2020, 59(48): 21414–21418.
[31] YU Y, ZHANG D, YANG P. Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations[J]. Nano Lett., 2017, 17(9): 5489–5494.
[32] TAO Q, XU P, LI M. Machine Learning for Perovskite Materials Design and Discovery[J]. Npj Comput. Mater., 2021: 1–18.
[33] LI C, LU X, DING W, et al. Formability of ABX3 (X=F, Cl, Br, I) Halide Perovskites[J]. Acta Crystallogr. Sect. B Struct. Sci., 2008, 64(6): 702–707.
[34] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides[J]. Sci. Adv., 2019: 1–10.
[35] ONLINE V A, HOMEPAGE J. Luminescent Metal–Organic Frameworks[J]. Chem. Soc. Rev., 2009, 38: 1330–1352.
[36] FRACKOWIAK D. The Jablonski Diagram[J]. J. Photochem. Photobiol. B Biol., 1988, 2(3): 399-401.
[37] DE ACHA N, ELOSÚA C, CORRES J M, et al. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media[J]. Sensors, 2019, 19(3): 1–34.
[38] BRIFFA J, SINAGRA E, BLUNDELL R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans[J]. Heliyon, 2020, 6(9): e04691.
[39] 周勇, 杨怡, 朱肖. 一种新型Zn-MOF配合物在荧光检测水体金属离子中的应用研究[J]. 化学试剂, 2018, 40(1): 81–84.
[40] WEI J H, YI J W, HAN M Le, et al. A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions[J]. Chem.-An Asian J., 2019, 14(20): 3694–3701.
[41] ZHANG Y, YUAN S, DAY G, et al. Luminescent Sensors Based on Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2018, 354: 28–45.
[42] LOU Y, ZHAO Y, CHEN J, et al. Metal Ions Optical Sensing by Semiconductor Quantum Dots[J]. J. Mater. Chem. C, 2014, 2(4): 595–613.
[43] LIU Y, TANG X, DENG M, et al. Hydrophilic AgInZnS Quantum Dots as a Fluorescent Turn-on Probe for Cd2+ Detection[J]. J. Alloys Compd., 2021, 864: 158109.
[44] ZHU H, YU T, XU H, et al. Fluorescent Nanohybrid of Gold Nanoclusters and Quantum Dots for Visual Determination of Lead Ions[J]. ACS Appl. Mater. Inter., 2014, 6(23): 21461–21467.
[45] CHEN X, YU S, YANG L, et al. Fluorescence and Visual Detection of Fluoride Ions Using a Photoluminescent Graphene Oxide Paper Sensor[J]. Nanoscale, 2016, 8(28): 13669–13677.
[46] LI Y P, ZHU X H, LI S N, et al. Highly Selective and Sensitive Turn-Off-On Fluorescent Probes for Sensing Al3+ Ions Designed by Regulating the Excited-State Intramolecular Proton Transfer Process in Metal-Organic Frameworks[J]. ACS Appl. Mater. Inter., 2019, 11(12): 11338–11348.
[47] WANG H, YANG L, CHU S, et al. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device[J]. Anal. Chem., 2019, 91(14): 9292–9299.
[48] AAMIR M, SHER M, AZAD M. A Facile Approach for Selective and Sensitive Detection of Aqueous Contamination in DMF by Using Perovskite Material[J]. Mater. Lett., 2016, 183: 135–138.
[49] AAMIR M, SHER M, MALIK M A, et al. A Chemodosimetric Approach for the Selective Detection of Pb2+ Ions Using a Cesium Based[J]. New J. Chem., 2016, 40: 9719–9724.
[50] BAYART A, SZCZEPANSKI F, BLACH J, et al. Upconversion Luminescence Properties and Thermal Quenching Mechanisms in the Layered Perovskite La1.9Er0.1Ti2O7 towards an Application as Optical Temperature Sensor[J]. J. Alloys Compd., 2018, 744: 516–527.
[51] ZHOU L, LIAO J F, HUANG Z G, et al. A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection[J]. Angew. Chem. Int. Ed., 2019, 58(16): 5277–5281.
[52] LU L-Q, TAN T, TIAN X-K, et al. Visual and Sensitive Fluorescent Sensing for Ultratrace Mercury Ions by Perovskite Quantum Dots[J]. Anal. Chim. Acta, 2017, 986: 109–114.
[53] ZHANG D, XU Y, LIU Q, et al. Encapsulation of CH3NH3PbBr3 Perovskite Quantum Dots in MOF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection[J]. Inorg. Chem., 2018, 57: 4613–4619.
[54] XU W L, ZHENG M, YUAN H, et al. Highly Emissive Zero-Dimensional Perovskite Prepared in Aqueous Solution and Its Recombination Dynamics[J]. Phys. E Low Dimens. Syst. Nanostruct., 2022, 136: 115038.
[55] GÖKÇE M, BURGAZ G, GÖKÇE A G. Cerium Doped Glasses Containing Reducing Agent for Enhanced Luminescence[J]. J. Lumin., 2020, 222: 15–17.
[56] RAJENDRA H J, PANDURANGAPPA C. Luminescence Investigation of a Cerium-Doped Yttrium Vanadate Phosphor[J]. Luminescence, 2020, 35(3): 341–346.
[57] VARGAS-HERNÁNDEZ R A. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys. Rev. B, 1996, 54: 11169–11171.
[58] JOUBERT D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Phys. Rev. B, 1999, 59(3): 1758–1775.
[59] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1997, 77(1992): 3865–3868.
[60] CHU L, AHMAD W, LIU W, et al. Lead‑Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications[J]. Nano-Micro Lett., 2019: 11:16.
[61] ZHANG R, WANG Z, XU X, et al. All-Inorganic Rare-Earth Halide Double Perovskite Single Crystals with Highly Efficient Photoluminescence[J]. Adv. Opt. Matrt., 2021, 9, 2100689.
[62] SHI C, YE L, GONG Z X, et al. Two-Dimensional Organic-Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics[J]. J. Am. Chem. Soc., 2020, 142(1): 545–551.
[63] LIN J, CHEN H, WANG L, et al. Copper(Ⅰ)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters[J]. Matter, 2019, 1(1): 180–191.
[64] HOFLUND G B, WEAVER J F, EPLING W S. AgO XPS Spectra[J]. Surf. Sci. Spectra, 1994, 3(2): 163–168.
[65] CHEN J, ZHANG C, LIU X, et al. Carrier Dynamic Process in All-Inorganic Halide Perovskites Explored by Photoluminescence Spectra[J]. Photonics Res., 2021, 9(2): 151–169.
[66] MADZIVHANDILA P, SMITH S, NTULI L, et al. Development of a Printed Paper-Based Origami Electrochemical Sensor for the Detection of Heavy Metals in Water[J]. Proc. of SPIE, 2019, 11043: 1–10.
[67] LIU Y, LI T, LING C, et al. Electrochemical Sensor for Cd2+ and Pb2+ Detection Based on Nano-Porous Pseudo Carbon Paste Electrode[J]. Chin. Chem. Lett., 2019, 30(12): 2211–2215.
[68] GUZIŃSKI M, LISAK G, KUPIS J, et al. Lead(II)-Selective Ionophores for Ion-Selective Electrodes: A Review[J]. Anal. Chim. Acta, 2013, 791: 1–12.
[69] DUARTE K, JUSTINO C I L, FREITAS A C, et al. Disposable Sensors for Environmental Monitoring of Lead, Cadmium and Mercury[J]. Trends Anal. Chem., 2015, 64: 183–190.
[70] KIM H N, REN W X, KIM J S, et al. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions[J]. Chem. Soc. Rev., 2012, 41(8): 3210–3244.
[71] ZHOU L, LIAO J, HUANG Z, et al. Highly Red Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection[J]. Angew. Chem. Int. Ed., 2018.
[72] WANG Y, ZHU Y, HUANG J, et al. CsPbBr3 Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium[J]. J. Phys. Chem. Lett., 2016, 7(21): 4253–4258.
[73] KIM S H, KIRAKOSYAN A, CHOI J, et al. Detection of Volatile Organic Compounds (VOCs), Aliphatic Amines, Using Highly Fluorescent Organic-Inorganic Hybrid Perovskite Nanoparticles[J]. Dye. Pigment., 2017, 147: 1–5.
[74] LIU J, ZHAO Y, LI X, et al. Dual-Emissive CsPbBr3@Eu-BTC Composite for Self-Calibrating Temperature Sensing Application[J]. Cryst. Growth Des., 2020, 20(1): 454–459.
[75] WU P, HE Q, ZHU D, et al. Highly Efficient Fluorescent and Colorimetric Sensing of Organic Amine Vapors Based on Organometal Halide Perovskite Nanostructures[J]. Anal. Methods, 2017, 9(25): 3804–3809.
[76] XU W, KOPYL S, KHOLKIN A, et al. Hybrid Organic-Inorganic Perovskites: Polar Properties and Applications[J]. Coord. Chem. Rev., 2019, 387: 398–414.
[77] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises[J]. J. Am. Chem. Soc., 2019, 141(3): 1171–1190.
[78] GONG X, VOZNYY O, JAIN A, et al. Electron-Phonon Interaction in Efficient Perovskite Blue Emitters[J]. Nat. Mater., 2018, 17(6): 550–556.
[79] DOU L, WONG A B, YU Y, et al. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites[J]. Science., 2015, 349(6255): 1518–1521.
[80] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops[J]. Nature, 1997, 389: 827–829.
[81] SOLTMAN D, SUBRAMANIAN V. Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect[J]. Langmuir, 2008, 24(5): 2224–2231.
[82] CHEN H, LIN J, KANG J, et al. Structural and Spectral Dynamics of Single-Crystalline Ruddlesden-Popper Phase Halide Perovskite Blue Light-Emitting Diodes[J]. Sci. Adv., 2020, 6(4): 1–9.
[83] GUO Z, WU X, ZHU T, et al. Electron-Phonon Scattering in Atomically Thin 2D Perovskites[J]. ACS Nano, 2016, 10(11): 9992–9998.
[84] PÉREZ-OSORIO M A, MILOT R L, FILIP M R, et al. Vibrational Properties of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra[J]. J. Phys. Chem. C, 2015, 119(46): 25703–25718.
[85] MANCINI A, QUADRELLI P, AMOROSO G, et al. Synthesis, Structural and Optical Characterization of APbX3 (A=methylammonium, Dimethylammonium, Trimethylammonium; X=I, Br, Cl) Hybrid Organic-Inorganic Materials[J]. J. Solid State Chem., 2016, 240: 55–60.
[86] ALLAM O, HOLMES C, GREENBERG Z, et al. Density Functional Theory – Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases[J]. ChemPhysChem, 2018, 19(19): 2559–2565.

所在学位评定分委会
化学系 ; 环境科学与工程学院
国内图书分类号
O611
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335719
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
马婧怡. 类钙钛矿发光材料的合成及其用于重金属离子荧光传感研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930491-马婧怡-环境科学与工程(4305KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马婧怡]的文章
百度学术
百度学术中相似的文章
[马婧怡]的文章
必应学术
必应学术中相似的文章
[马婧怡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。