[1] GUMPU M B, SETHURAMAN S, KRISHNAN U M, et al. A Review on Detection of Heavy Metal Ions in Water - An Electrochemical Approach[J]. Sensors Actuators B Chem., 2015, 213: 515–533.
[2] KIM H N, REN W X, KIM J S, et al. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions[J]. Chem. Soc. Rev., 2012, 41(8): 3210–3244.
[3] 环境保护部, 国家质量监督检验检疫总局. 中华人民共和国国家标准-铅、锌工业污染物排放标准: GB 25466-2010[S].
[4] PARSONS P J, SLAVIN W. A Rapid Zeeman Graphite Furnace Atomic Absorption Spectrometric Method for the Determination of Lead in Blood[J]. Spectrochim. Acta Part B At. Spectrosc., 1993, 48(6–7): 925–939.
[5] POHL P. Determination of Metal Content in Honey by Atomic Absorption and Emission Spectrometries[J]. TrAC - Trends Anal. Chem., 2009, 28(1): 117–128.
[6] A. SALONIA J, G. WUILLOUD R, A. GÁQUEZ J, et al. Determination of Lead in Tap Water by ICP-AES with Flow-Injection on-Line Adsorption Preconcentration Using a Knotted Reactor and Ultrasonic Nebulization[J]. J. Anal. At. Spectrom., 2002, 14(8): 1239–1243.
[7] FELDMAN B J, OSTERLOH J D, HATA B H, et al. Determination of Lead in Blood by Square Wave Anodic Stripping Voltammetry at a Carbon Disk Ultramicroelectrode[J]. Anal. Chem., 1994, 66(13): 1983–1987.
[8] KAUR B, KAUR N, KUMAR S. Colorimetric Metal Ion Sensors–A Comprehensive Review of the Years 2011–2016[J]. Coord. Chem. Rev., 2018, 358: 13–69.
[9] RASHEED T, BILAL M, NABEEL F, et al. Fluorescent Sensor Based Models for the Detection of Environmentally-Related Toxic Heavy Metals[J]. Sci. Total Environ., 2018, 615: 476–485.
[10] OEHME I, WOLFBEIS O S. Optical Sensors for Determination of Heavy Metal Ions[J]. Mikrochim. Acta, 1997, 126(3): 177–192.
[11] BASABE DESMONTS L, REINHOUDT D N, CREGO CALAMA M. Design of Fluorescent Materials for Chemical Sensing[J]. Chem. Soc. Rev., 2007, 36(1995): 993–1017.
[12] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises[J]. J. Am. Chem. Soc., 2019, 141(3): 1171–1190.
[13] KIM H, HAN J S, CHOI J, et al. Halide Perovskites for Applications beyond Photovoltaics[J]. Small Methods, 2018, 2(3): 1700310.
[14] HOEFLER S F, TRIMMEL G. Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: A Review[J]. Monatsh. Chem., 2017, 148(5): 795–826.
[15] JENA A K, KULKARNI A, MIYASAKA T. Halide Perovskite Photovoltaics: Background , Status , and Future Prospects[J]. Chem. Rev., 2019, 119(5): 3036–3103.
[16] MITZI D B, WANG S, FEILD C A, et al. Conducting Layered Organic-Inorganic Halides Containing <110>-Oriented Perovskite Sheets.[J]. Science, 1995, 267(5203): 1473–1476.
[17] GRABOWSKA E. Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties-A Review[J]. Appl. Catal. B Environ., 2016, 186: 97–126.
[18] XIAO Z, SONG Z, YAN Y. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives[J]. Adv. Mater., 2019, 31(47): 1–22.
[19] ZENG Z, XU Y, ZHANG Z, et al. Rare-Earth-Containing Perovskite Nanomaterials: Design, Synthesis, Properties and Applications[J]. Chem. Soc. Rev., 2020, 49(4): 1109–1143.
[20] ERA M, MORIMOTO S, TSUTSUI T, et al. Organic-Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H 4NH3)2PbI4[J]. Appl. Phys. Lett., 1994, 65(6): 676–678.
[21] TAN Z, MOGHADDAM R S, LAI M L, et al. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite[J]. Nat. Nanotechnol., 2014, 9: 687–692.
[22] KAR S, JAMALUDIN N F, YANTARA N, et al. Recent Advancements and Perspectives on Light Management and High Performance in Perovskite Light-Emitting Diodes[J]. Nanophotonics, 2021, 10(8): 2103–2143.
[23] ZHOU C, LIN H, TIAN Y, et al. Luminescent Zero-Dimensional Organic Metal Halide Hybrids with near-Unity Quantum Efficiency[J]. Chem. Sci., 2018, 9(3): 586–593.
[24] SUN S, LU M, GAO X, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications[J]. Adv. Sci., 2021, 8(24): 1–23.
[25] H.L. W. Uber Die Casium-Und Kalium-Bleihalogenide[J]. Z. Anorg. Allg. Chem., 1893(2): 195–210.
[26] SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids[J]. ACS Energy Lett., 2016, 1(4): 840–845.
[27] HU M, GE C, YU J, et al. Mechanical and Optical Properties of Cs4BX6 (B = Pb, Sn; X = Cl, Br, I) Zero-Dimension Perovskites[J]. J. Phys. Chem. C, 2017, 121(48): 27053–27058.
[28] BENIN B M, DIRIN D N, MORAD V, et al. Highly Emissive Self-Trapped Excitons in Fully Inorganic Zero-Dimensional Tin Halides[J]. Angew. Chem. Int. Ed., 2018, 57(35): 11329–11333.
[29] JUN T, SIM K, IIMURA S, et al. Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure[J]. Adv. Mater., 2018, 30(43): 1–6.
[30] CHENG P, FENG L, LIU Y, et al. Doped Zero-Dimensional Cesium Zinc Halides for High-Efficiency Blue Light Emission[J]. Angew. Chem. Int. Ed., 2020, 59(48): 21414–21418.
[31] YU Y, ZHANG D, YANG P. Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations[J]. Nano Lett., 2017, 17(9): 5489–5494.
[32] TAO Q, XU P, LI M. Machine Learning for Perovskite Materials Design and Discovery[J]. Npj Comput. Mater., 2021: 1–18.
[33] LI C, LU X, DING W, et al. Formability of ABX3 (X=F, Cl, Br, I) Halide Perovskites[J]. Acta Crystallogr. Sect. B Struct. Sci., 2008, 64(6): 702–707.
[34] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides[J]. Sci. Adv., 2019: 1–10.
[35] ONLINE V A, HOMEPAGE J. Luminescent Metal–Organic Frameworks[J]. Chem. Soc. Rev., 2009, 38: 1330–1352.
[36] FRACKOWIAK D. The Jablonski Diagram[J]. J. Photochem. Photobiol. B Biol., 1988, 2(3): 399-401.
[37] DE ACHA N, ELOSÚA C, CORRES J M, et al. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media[J]. Sensors, 2019, 19(3): 1–34.
[38] BRIFFA J, SINAGRA E, BLUNDELL R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans[J]. Heliyon, 2020, 6(9): e04691.
[39] 周勇, 杨怡, 朱肖. 一种新型Zn-MOF配合物在荧光检测水体金属离子中的应用研究[J]. 化学试剂, 2018, 40(1): 81–84.
[40] WEI J H, YI J W, HAN M Le, et al. A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions[J]. Chem.-An Asian J., 2019, 14(20): 3694–3701.
[41] ZHANG Y, YUAN S, DAY G, et al. Luminescent Sensors Based on Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2018, 354: 28–45.
[42] LOU Y, ZHAO Y, CHEN J, et al. Metal Ions Optical Sensing by Semiconductor Quantum Dots[J]. J. Mater. Chem. C, 2014, 2(4): 595–613.
[43] LIU Y, TANG X, DENG M, et al. Hydrophilic AgInZnS Quantum Dots as a Fluorescent Turn-on Probe for Cd2+ Detection[J]. J. Alloys Compd., 2021, 864: 158109.
[44] ZHU H, YU T, XU H, et al. Fluorescent Nanohybrid of Gold Nanoclusters and Quantum Dots for Visual Determination of Lead Ions[J]. ACS Appl. Mater. Inter., 2014, 6(23): 21461–21467.
[45] CHEN X, YU S, YANG L, et al. Fluorescence and Visual Detection of Fluoride Ions Using a Photoluminescent Graphene Oxide Paper Sensor[J]. Nanoscale, 2016, 8(28): 13669–13677.
[46] LI Y P, ZHU X H, LI S N, et al. Highly Selective and Sensitive Turn-Off-On Fluorescent Probes for Sensing Al3+ Ions Designed by Regulating the Excited-State Intramolecular Proton Transfer Process in Metal-Organic Frameworks[J]. ACS Appl. Mater. Inter., 2019, 11(12): 11338–11348.
[47] WANG H, YANG L, CHU S, et al. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device[J]. Anal. Chem., 2019, 91(14): 9292–9299.
[48] AAMIR M, SHER M, AZAD M. A Facile Approach for Selective and Sensitive Detection of Aqueous Contamination in DMF by Using Perovskite Material[J]. Mater. Lett., 2016, 183: 135–138.
[49] AAMIR M, SHER M, MALIK M A, et al. A Chemodosimetric Approach for the Selective Detection of Pb2+ Ions Using a Cesium Based[J]. New J. Chem., 2016, 40: 9719–9724.
[50] BAYART A, SZCZEPANSKI F, BLACH J, et al. Upconversion Luminescence Properties and Thermal Quenching Mechanisms in the Layered Perovskite La1.9Er0.1Ti2O7 towards an Application as Optical Temperature Sensor[J]. J. Alloys Compd., 2018, 744: 516–527.
[51] ZHOU L, LIAO J F, HUANG Z G, et al. A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection[J]. Angew. Chem. Int. Ed., 2019, 58(16): 5277–5281.
[52] LU L-Q, TAN T, TIAN X-K, et al. Visual and Sensitive Fluorescent Sensing for Ultratrace Mercury Ions by Perovskite Quantum Dots[J]. Anal. Chim. Acta, 2017, 986: 109–114.
[53] ZHANG D, XU Y, LIU Q, et al. Encapsulation of CH3NH3PbBr3 Perovskite Quantum Dots in MOF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection[J]. Inorg. Chem., 2018, 57: 4613–4619.
[54] XU W L, ZHENG M, YUAN H, et al. Highly Emissive Zero-Dimensional Perovskite Prepared in Aqueous Solution and Its Recombination Dynamics[J]. Phys. E Low Dimens. Syst. Nanostruct., 2022, 136: 115038.
[55] GÖKÇE M, BURGAZ G, GÖKÇE A G. Cerium Doped Glasses Containing Reducing Agent for Enhanced Luminescence[J]. J. Lumin., 2020, 222: 15–17.
[56] RAJENDRA H J, PANDURANGAPPA C. Luminescence Investigation of a Cerium-Doped Yttrium Vanadate Phosphor[J]. Luminescence, 2020, 35(3): 341–346.
[57] VARGAS-HERNÁNDEZ R A. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys. Rev. B, 1996, 54: 11169–11171.
[58] JOUBERT D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Phys. Rev. B, 1999, 59(3): 1758–1775.
[59] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1997, 77(1992): 3865–3868.
[60] CHU L, AHMAD W, LIU W, et al. Lead‑Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications[J]. Nano-Micro Lett., 2019: 11:16.
[61] ZHANG R, WANG Z, XU X, et al. All-Inorganic Rare-Earth Halide Double Perovskite Single Crystals with Highly Efficient Photoluminescence[J]. Adv. Opt. Matrt., 2021, 9, 2100689.
[62] SHI C, YE L, GONG Z X, et al. Two-Dimensional Organic-Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics[J]. J. Am. Chem. Soc., 2020, 142(1): 545–551.
[63] LIN J, CHEN H, WANG L, et al. Copper(Ⅰ)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters[J]. Matter, 2019, 1(1): 180–191.
[64] HOFLUND G B, WEAVER J F, EPLING W S. AgO XPS Spectra[J]. Surf. Sci. Spectra, 1994, 3(2): 163–168.
[65] CHEN J, ZHANG C, LIU X, et al. Carrier Dynamic Process in All-Inorganic Halide Perovskites Explored by Photoluminescence Spectra[J]. Photonics Res., 2021, 9(2): 151–169.
[66] MADZIVHANDILA P, SMITH S, NTULI L, et al. Development of a Printed Paper-Based Origami Electrochemical Sensor for the Detection of Heavy Metals in Water[J]. Proc. of SPIE, 2019, 11043: 1–10.
[67] LIU Y, LI T, LING C, et al. Electrochemical Sensor for Cd2+ and Pb2+ Detection Based on Nano-Porous Pseudo Carbon Paste Electrode[J]. Chin. Chem. Lett., 2019, 30(12): 2211–2215.
[68] GUZIŃSKI M, LISAK G, KUPIS J, et al. Lead(II)-Selective Ionophores for Ion-Selective Electrodes: A Review[J]. Anal. Chim. Acta, 2013, 791: 1–12.
[69] DUARTE K, JUSTINO C I L, FREITAS A C, et al. Disposable Sensors for Environmental Monitoring of Lead, Cadmium and Mercury[J]. Trends Anal. Chem., 2015, 64: 183–190.
[70] KIM H N, REN W X, KIM J S, et al. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions[J]. Chem. Soc. Rev., 2012, 41(8): 3210–3244.
[71] ZHOU L, LIAO J, HUANG Z, et al. Highly Red Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection[J]. Angew. Chem. Int. Ed., 2018.
[72] WANG Y, ZHU Y, HUANG J, et al. CsPbBr3 Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium[J]. J. Phys. Chem. Lett., 2016, 7(21): 4253–4258.
[73] KIM S H, KIRAKOSYAN A, CHOI J, et al. Detection of Volatile Organic Compounds (VOCs), Aliphatic Amines, Using Highly Fluorescent Organic-Inorganic Hybrid Perovskite Nanoparticles[J]. Dye. Pigment., 2017, 147: 1–5.
[74] LIU J, ZHAO Y, LI X, et al. Dual-Emissive CsPbBr3@Eu-BTC Composite for Self-Calibrating Temperature Sensing Application[J]. Cryst. Growth Des., 2020, 20(1): 454–459.
[75] WU P, HE Q, ZHU D, et al. Highly Efficient Fluorescent and Colorimetric Sensing of Organic Amine Vapors Based on Organometal Halide Perovskite Nanostructures[J]. Anal. Methods, 2017, 9(25): 3804–3809.
[76] XU W, KOPYL S, KHOLKIN A, et al. Hybrid Organic-Inorganic Perovskites: Polar Properties and Applications[J]. Coord. Chem. Rev., 2019, 387: 398–414.
[77] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises[J]. J. Am. Chem. Soc., 2019, 141(3): 1171–1190.
[78] GONG X, VOZNYY O, JAIN A, et al. Electron-Phonon Interaction in Efficient Perovskite Blue Emitters[J]. Nat. Mater., 2018, 17(6): 550–556.
[79] DOU L, WONG A B, YU Y, et al. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites[J]. Science., 2015, 349(6255): 1518–1521.
[80] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops[J]. Nature, 1997, 389: 827–829.
[81] SOLTMAN D, SUBRAMANIAN V. Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect[J]. Langmuir, 2008, 24(5): 2224–2231.
[82] CHEN H, LIN J, KANG J, et al. Structural and Spectral Dynamics of Single-Crystalline Ruddlesden-Popper Phase Halide Perovskite Blue Light-Emitting Diodes[J]. Sci. Adv., 2020, 6(4): 1–9.
[83] GUO Z, WU X, ZHU T, et al. Electron-Phonon Scattering in Atomically Thin 2D Perovskites[J]. ACS Nano, 2016, 10(11): 9992–9998.
[84] PÉREZ-OSORIO M A, MILOT R L, FILIP M R, et al. Vibrational Properties of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra[J]. J. Phys. Chem. C, 2015, 119(46): 25703–25718.
[85] MANCINI A, QUADRELLI P, AMOROSO G, et al. Synthesis, Structural and Optical Characterization of APbX3 (A=methylammonium, Dimethylammonium, Trimethylammonium; X=I, Br, Cl) Hybrid Organic-Inorganic Materials[J]. J. Solid State Chem., 2016, 240: 55–60.
[86] ALLAM O, HOLMES C, GREENBERG Z, et al. Density Functional Theory – Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases[J]. ChemPhysChem, 2018, 19(19): 2559–2565.
修改评论