[1] 市场监督管理总局关于 2019 年全国特种设备安全状况的通告[J]. 中国特种设备安全, 2020, 36(04): 1-4.
[2] 机电工程 署 : 已 报 告 的 升 降 机 意 外 记 录 (799)[EB/OL]. https://www.emsd.gov.hk/tc/lifts_and_escalators_safety/publications/contractors_performance_rating/reported_lift_incident_records/index.html.
[3] Wang C, Zhang R, Zhang Q. Analysis of transverse vibration acceleration for a high -speed elevator with random parameter based on perturbation theory[J]. Int. J. Acoustics Vibration, 2017, 22: 218-223.
[4] Chai S, Li X I, Jia Y, et al. A Non-Intrusive Deep Learning Based Diagnosis System for Elevators[J]. IEEE Access, 2021, 9: 20993-21003.
[5] 李明亮. 时间序列相似性聚类算法研究[D]. 湖南大学, 2010.
[6] Min E, Guo X, Liu Q, et al. A survey of clustering with deep learning: From the perspective of network architecture[J]. IEEE Access, 2018, 6: 39501-39514.
[7] Soleimany G, Abessi M. A New Similarity Measure for Time Series Data Mining Based on Longest Common Subsequence[J]. American Journal of Data Mining and Knowledge Discovery, 2019, 4(1): 32.
[8] Agarwal A, Maheswaran R, Marwan N, et al. Wavelet-based multiscale similarity measure for complex networks[J]. The European Physical Journal B, 2018, 91(11): 1 -12.
[9] Radhakrishna V, Aljawarneh S A, Kumar P V, et al. A novel fuzzy similarity measure and prevalence estimation approach for similarity profiled temporal association pattern mining[J]. Future Generation Computer Systems, 2018, 83: 582-595.
[10] Zhang M, Pi D. A new time series representation model and corresponding similarity measure for fast and accurate similarity detection[J]. IEEE Access, 2017, 5: 24503-24519.
[11] 甄远婷, 冶继民, 李国荣. 基于中心 Copula 函数相似性度量的时间序列聚类方法[J]. 陕西师范大学学报(自然科学版), 2021, 49(01): 29-36.
[12] 夏寒松, 张力生, 桑春艳. 基于 LDTW 的动态时间规整改进算法[J]. 计算机工程: 1-14.
[13] 李国荣, 冶继民, 甄远婷. 基于新的鲁棒相似性度量的时间序列聚类[J]. 计算机应用: 1-7.
[14] Soni A N. Feature Extraction Methods for Time Series Functions using Machine Learning[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2018, 7(8): 8661-8665.
[15] Bauer A, Züfle M, Herbst N, et al. Telescope: An automatic feature extraction and transformation approach for time series forecasting on a level-playing field[C]. 2020 IEEE 36th International Conference on Data Engineering (ICDE), 202 0: 1902-1905.
[16] 陈海兰. 面向聚类及预测的时间序列信息粒化方法研究[D]. 北京:北京科技大学, 2021.
[17] 刘学. 基于流形学习的时间序列聚类研究[D]. 石家庄:河北经贸大学, 2016.
[18] Han M, Feng S, Chen C P, et al. Structured manifold broad learning system: A manifold perspective for large-scale chaotic time series analysis and prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(9): 1809 -1821.
[19] Li Y, Li Y, Chen X, et al. Denoising and feature extraction algorithms using NPE combined with VMD and their applications in ship-radiated noise[J]. Symmetry, 2017, 9(11): 256.
[20] Lapidot I, Bonastre J-F. Generalized viterbi-based models for time-series segmentation applied to speaker diarization[C]. ODYSSEY 2012-The Speaker and Language Recognition Workshop, 2012.
[21] Zang D, Liu J, Wang H. Markov chain-based feature extraction for anomaly detection in time series and its industrial application[C]. 2018 Chinese Control And Decision Conference (CCDC), 2018: 1059-1063.
[22] Yang Y, Jiang J. Adaptive bi-weighting toward automatic initialization and model selection for HMM-based hybrid meta-clustering ensembles[J]. IEEE Transactions on Cybernetics, 2018, 49(5): 1657-1668.
[23] Jung Y, Park J. Scalable Hybrid Hidden Markov Model with Gaussian Process Emission for Sequential Time-series Observations[C]. Third Symposium on Advances in Approximate Bayesian Inference, 2020.
[24] Kanaan M, Benabdeslem K, Kheddouci H. A Generative Time Series Clustering Framework Based on an Ensemble Mixture of HMMs[C]. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020: 793-798.
[25] Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.
[26] Yang B, Fu X, Sidiropoulos N D, et al. Towards k-means-friendly spaces: Simultaneous deep learning and clustering[C]. International Conference on Machine Learning, 2017: 3861-3870.
[27] Huang P, Huang Y, Wang W, et al. Deep embedding network for clustering[C]. 2014 22nd International conference on pattern recognition, 2014: 1532-1537.
[28] Chen D, Lv J, Zhang Y. Unsupervised multi-manifold clustering by learning deep representation[C]. Workshops at the thirty-first AAAI conference on artificial intelligence, 2017.
[29] Shah S A, Koltun V. Deep continuous clustering[J]. arXiv preprint arXiv:1803.01449, 2018.
[30] Arif M, Wang G, Chen S. Deep learning with non-parametric regression model for traffic flow prediction[C]. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 2018: 681-688.
[31] Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis[C]. International conference on machine learning, 2016: 478-487.
[32] Li F, Qiao H, Zhang B. Discriminatively Boosted Image Clustering with Fully Convolutional Auto-Encoders[J]. Pattern Recognition, 2017, 83: 161-173.
[33] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
[34] Harchaoui W, Mattei P-A, Bouveyron C. Deep adversarial Gaussian mixture auto encoder for clustering[J], 2017.
[35] Dosovitskiy A, Springenberg J T, Riedmiller M, et al. Discriminative unsupervised feature learning with convolutional neural networks[J]. Advances in neural information processing systems, 2014, 27.
[36] Chen X, Duan Y, Houthooft R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 2180 -2188.
[37] Jiang Z, Zheng Y, Tan H, et al.: Variational deep embedding: A generative approach to clustering, CoRR, 2016.
[38] Liao W, Guo Y, Chen X, et al. A unified unsupervised gaussian mixture variational autoencoder for high dimensional outlier detection[C]. 2018 IEEE International Conference on Big Data (Big Data), 2018: 1208-1217.
[39] Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:1803.01271, 2018.
[40] Zeiler M D, Taylor G W, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning[C]. 2011 international conference on computer vision, 2011: 2018-2025.
[41] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]. European conference on computer vision, 2014: 818-833.
[42] Lea C, Flynn M D, Vidal R, et al. Temporal convolutional networks for action segmentation and detection[C]. proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 156-165.
[43] Van Den Oord A, Dieleman S, Zen H, et al. WaveNet: A generative model for raw audio[J]. SSW, 2016, 125: 2.
[44] Bengio, Yoshua, Courville, et al. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8): 1798-1828.
[45] Guo X, Gao L, Liu X, et al. Improved deep embedded clustering with local structure preservation[C]. Ijcai, 2017: 1753-1759.
[46] Amarbayasgalan T, Jargalsaikhan B, Ryu K H. Unsupervised novelty detection using deep autoencoders with density based clustering[J]. Applied Sciences, 2018, 8(9): 1468.
[47] Zhang C, Song D, Chen Y, et al. A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data[J], 2018.
修改评论