中文版 | English
题名

皮肤-电极界面的传感性能及应用

姓名
姓名拼音
HOU Xingyu
学号
11930244
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
郭传飞
导师单位
材料科学与工程系
论文答辩日期
2022-04-28
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

柔性压力传感器由于其可弯曲、折叠、拉伸、小巧轻便等优势,在可穿戴设备、智能机器人等领域具有巨大的应用前景。目前大部分柔性压力传感器采用三层结构设计,传感器中最重要的活性层(例如离电型压力传感器中的离子凝胶)往往需要经过复杂的设计、合成、制备过程,同时有的活性层需要与外界环境隔离以保持其性能稳定。

人体皮肤组织本身就是天然的离子活性材料,含有大量的Na+Cl-K+等离子。本文采用人体皮肤作为离电型压力传感器中的活性层,通过在皮肤表面贴附两个电极(有微结构的传感电极,以及没有微结构的对电极),构成皮肤电极压力传感结构(SEMS)。SEMS中,皮肤-电极界面形成电荷间距在纳米级别的双电层,通过电极与皮肤接触面积的变化,改变双电层界面面积和电容值,实现对表皮压力的传感。本研究将高长径比的柱状微结构引入传感电极,使SEMS具有灵敏度高(11.8 kPa-1)、响应速度快(~15 ms)、检测限低(~0.2 Pa)、稳定性好(可承受5000次循环加载/卸载)等特点,同时具有良好的抗干扰和抗汗性能。基于此传感原理而开发的智能手套能够完成对使用者脉搏信号和触觉信号的实时检测,且在长期佩戴中受汗液影响较小。此外,本研究进一步提出并设计的自粘附皮肤-电极压力传感结构可嵌合到皮肤纹理中,达成更加稳定的接触界面和更好的使用体验。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] JOHNSON K O. The roles and functions of cutaneous mechanoreceptors [J]. Curr Opin Neurobiol, 2001, 11(4): 455-61.
[2] JOHANSSON R S, FLANAGAN J R. Coding and use of tactile signals from the fingertips in object manipulation tasks [J]. Nat Rev Neurosci, 2009, 10(5): 345-59.
[3] SCHEPERS R J, RINGKAMP M. Thermoreceptors and thermosensitive afferents [J]. Neurosci Biobehav Rev, 2010, 34(2): 177-84.
[4] YANG J C, MUN J, KWON S Y, et al. Electronic Skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics [J]. Adv Mater, 2019, 31(48): 1970337.
[5] CHUNG H U, RWEI A Y, HOURLIER-FARGETTE A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units [J]. Nat Med, 2020, 26(3): 418-29.
[6] KIM D-H, LU N, MA R, et al. Epidermal electronics [J]. Science, 2011, 333(6044): 838-43.
[7] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用 [J]. 物理学报, 2020, 69(17): 64-79.
[8] PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film [J]. Nat Commun, 2014, 5(1): 3002.
[9] CHEN M, LUO W, XU Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays [J]. Nat Commun, 2019, 10(1): 4024.
[10] CHOU H-H, NGUYEN A, CHORTOS A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing [J]. Nat Commun, 2015, 6(1): 8011.
[11] LIPOMI D J, VOSGUERITCHIAN M, TEE B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes [J]. Nat Nanotechnol, 2011, 6(12): 788-92.
[12] KANG M, KIM J, JANG B, et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics [J]. ACS Nano, 2017, 11(8): 7950-7.
[13] LEE K, LEE J, KIM G, et al. Rough-surface-enabled capacitive pressure sensors with 3D touch capability [J]. Small, 2017, 13(43): 1700368.
[14] QIN J, YIN L-J, HAO Y-N, et al. Flexible and stretchable capacitive sensors with different microstructures [J]. Adv Mater, 2021, 33(34): 2008267.
[15] CHEN X, LI X, SHAO J, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors [J]. Small, 2017, 13(23): 1604245.
[16] PERSANO L, DAGDEVIREN C, SU Y, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) [J]. Nat Commun, 2013, 4(1): 1633.
[17] YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring [J]. Sens Actuators, A, 2020, 301: 111789.
[18] DAS P S, CHHETRY A, MAHARJAN P, et al. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring [J]. Nano Res, 2019, 12(8): 1789-95.
[19] MENG K, CHEN J, LI X, et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure [J]. Adv Funct Mater, 2019, 29(5): 1806388.
[20] YAO G, XU L, CHENG X, et al. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing [J]. Adv Funct Mater, 2020, 30(6): 1907312.
[21] LIN Z, YANG J, LI X, et al. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring [J]. Adv Funct Mater, 2018, 28(1): 1704112.
[22] LI R, SI Y, ZHU Z, et al. Supercapacitive iontronic nanofabric sensing [J]. Adv Mater, 2017, 29(36): 1700253.
[23] CHO S H, LEE S W, YU S, et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity [J]. ACS Appl Mater Interfaces, 2017, 9(11): 10128-35.
[24] CAO Y, LI T, GU Y, et al. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture [J]. Small, 2018, 14(16): 1703902.
[25] DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J]. Nat Commun, 2014, 5(1): 4496.
[26] CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures [J]. ACS Nano, 2017, 11(5): 4507-13.
[27] HA M, LIM S, CHO S, et al. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors [J]. ACS Nano, 2018, 12(4): 3964-74.
[28] LIU Q, LIU Z, LI C, et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition [J]. Adv Sci, 2020, 7(10): 2000348.
[29] LI S, CHU J, LI B, et al. Handwriting iontronic pressure sensing origami [J]. ACS Appl Mater Interfaces, 2019, 11(49): 46157-64.
[30] LI S, PAN N, ZHU Z, et al. All-in-one iontronic sensing paper [J]. Adv Funct Mater, 2019, 29(11): 1807343.
[31] PARK D Y, JOE D J, KIM D H, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors [J]. Adv Mater, 2017, 29(37): 1702308.
[32] PARK Y J, SHARMA B K, SHINDE S M, et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor [J]. ACS Nano, 2019, 13(3): 3023-30.
[33] LEE S, FRANKLIN S, HASSANI F A, et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference [J]. Science, 2020, 370(6519): 966-70.
[34] PARK M, PARK Y J, CHEN X, et al. MoS2-based tactile sensor for electronic skin applications [J]. Adv Mater, 2016, 28(13): 2556-62.
[35] EDWARDS D A, LANGER R. A linear theory of transdermal transport phenomena [J]. J Pharm Sci, 1994, 83(9): 1315-34.
[36] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J]. Nature, 2016, 529(7587): 509-14.
[37] YUK H, LU B, ZHAO X. Hydrogel bioelectronics [J]. Chem Soc Rev, 2019, 48(6): 1642-67.
[38] MENG K, XIAO X, WEI W, et al. Wearable pressure sensors for pulse wave monitoring [J]. Adv Mater, 2022: 2109357.
[39] WANG X, ZHANG Y, ZHANG X, et al. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics [J]. Adv Mater, 2018, 30(12): 1706738.
[40] GUO Y, ZHONG M, FANG Z, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing [J]. Nano Lett, 2019, 19(2): 1143-50.
[41] DENG C, TANG W, LIU L, et al. Self-powered insole plantar pressure mapping system [J]. Adv Funct Mater, 2018, 28(29): 1801606.
[42] KIM S, AMJADI M, LEE T-I, et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices [J]. ACS Appl Mater Interfaces, 2019, 11(26): 23639-48.
[43] LIN Q, HUANG J, YANG J, et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring [J]. Adv Healthcare Mater, 2020, 9(17): 2001023.
[44] CHEN S, WU N, LIN S, et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics [J]. Nano Energy, 2020, 70: 104460.
[45] CHEN J, LIU H, WANG W, et al. High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film [J]. Adv Funct Mater, 2019, 29(37): 1903162.
[46] WANG X, YANG J, MENG K, et al. Enabling the unconstrained epidermal pulse wave monitoring via finger-touching [J]. Adv Funct Mater, 2021, 31(32): 2102378.
[47] MENG K, WU Y, HE Q, et al. Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces [J]. ACS Appl Mater Interfaces, 2019, 11(50): 46399-407.
[48] SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove [J]. Nature, 2019, 569(7758): 698-702.
[49] YU X, XIE Z, YU Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality [J]. Nature, 2019, 575(7783): 473-9.
[50] LU P, WANG L, ZHU P, et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes [J]. Sci Bull, 2021, 66(11): 1091-100.
[51] KIM J, LEE M, SHIM H J, et al. Stretchable silicon nanoribbon electronics for skin prosthesis [J]. Nat Commun, 2014, 5(1): 5747.
[52] LIANG Z, CHENG J, ZHAO Q, et al. High-performance flexible tactile sensor enabling intelligent haptic perception for a soft prosthetic hand [J]. Adv Mater Technol, 2019, 4(8): 1900317.
[53] BOUTRY C M, NEGRE M, JORDA M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics [J]. Sci Robot, 2018, 3(24): eaau6914.
[54] HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th Anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress [J]. Adv Mater, 2013, 25(42): 5997-6038.
[55] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers [J]. Nat Mater, 2010, 9(10): 859-64.
[56] LUO Y, SHAO J, CHEN S, et al. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays [J]. ACS Appl Mater Interfaces, 2019, 11(19): 17796-803.
[57] WAN Y, QIU Z, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures [J]. Adv Electron Mater, 2018, 4(4): 1700586.
[58] ZHANG Y, YANG J, HOU X, et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces [J]. Nat Commun, 2022, 13(1): 1317.
[59] WANG S, HUANG K H, YANG Y J, et al. A highly sensitive capacitive pressure sensor with microdome structure for robot tactile detection [Z]. 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII (TRANSDUCERS and EUROSENSORS). Berlin, GERMANY. 2019: 458-61
[60] MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer [J]. J Mater Chem C, 2018, 6(48): 13232-40.
[61] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity [J]. Nat Commun, 2020, 11(1): 209.
[62] WAN Y, QIU Z, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin [J]. Small, 2018, 14(35): e1801657.
[63] CHANG Y, WANG L, LI R, et al. First decade of interfacial iontronic sensing: From droplet sensors to artificial skins [J]. Adv Mater, 2021, 33(7): e2003464.
[64] BAI N, WANG L, XUE Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range [J]. ACS Nano, 2022, 16(3): 4338-47.
[65] KANG D, PIKHITSA P V, CHOI Y W, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system [J]. Nature, 2014, 516(7530): 222-6.
[66] DU J, WANG L, SHI Y, et al. Optimized CNT-PDMS flexible composite for attachable health-care device [J]. Sensors, 2020, 20(16): 4523.
[67] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins [J]. ACS Nano, 2014, 8(5): 4689-97.
[68] ZHU B, NIU Z, WANG H, et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors [J]. Small, 2014, 10(18): 3625-31.
[69] LEE J-H, YOON H-J, KIM T Y, et al. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors [J]. Adv Funct Mater, 2015, 25(21): 3203-9.
[70] LI X, XU C, WANG C, et al. Improved triboelectrification effect by bendable and slidable fish-scale-like microstructures [J]. Nano Energy, 2017, 40: 646-54.
[71] SHI J, WANG L, DAI Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range [J]. Small, 2018, 14(27): e1800819.
[72] XIAO Y, DUAN Y, LI N, et al. Multilayer double-sided microstructured flexible iontronic pressure sensor with a record-wide linear working range [J]. ACS Sens, 2021, 6(5): 1785-95.
[73] FU M, ZHANG J, JIN Y, et al. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers [J]. Adv Sci, 2020, 7(17): 2000258.
[74] NIU H, GAO S, YUE W, et al. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure [J]. Small, 2020, 16(4): e1904774.
[75] QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin [J]. ACS Appl Mater Interfaces, 2019, 11(43): 40716-25.
[76] NIE B, XING S, BRANDT J D, et al. Droplet-based interfacial capacitive sensing [J]. Lab on a Chip, 2012, 12(6): 1110-8.
[77] NIE B, LI R, BRANDT J D, et al. Iontronic microdroplet array for flexible ultrasensitive tactile sensing [J]. Lab Chip, 2014, 14(6): 1107-16.
[78] YOON S G, PARK B J, CHANG S T. Highly sensitive piezocapacitive sensor for detecting static and dynamic pressure using ion-gel thin films and conductive elastomeric composites [J]. ACS Appl Mater Interfaces, 2017, 9(41): 36206-19.
[79] ZHU Z, LI R, PAN T. Imperceptible epidermal-iontronic interface for wearable sensing [J]. Adv Mater, 2018, 30(6): 1705122.
[80] LI Z, ZHANG S, CHEN Y, et al. Gelatin methacryloyl-based tactile sensors for medical wearables [J]. Adv Funct Mater, 2020, 30(49): 2003601.
[81] SHARMA S, CHHETRY A, SHARIFUZZAMAN M, et al. Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition [J]. ACS Appl Mater Interfaces, 2020, 12(19): 22212-24.
[82] ZEGLIO E, RUTZ A L, WINKLER T E, et al. Conjugated polymers for assessing and controlling biological functions [J]. Adv Mater, 2019, 31(22): 1806712.
[83] BIHAR E, ROBERTS T, SAADAOUI M, et al. Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography [J]. Adv Healthcare Mater, 2017, 6(6): 1601167.
[84] LU B, YUK H, LIN S, et al. Pure PEDOT:PSS hydrogels [J]. Nat Commun, 2019, 10(1): 1043.
[85] ZHANG L, KUMAR K S, HE H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring [J]. Nat Commun, 2020, 11(1): 4683.
[86] THOMAS J P, ZHAO L, MCGILLIVRAY D, et al. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition [J]. J Mater Chem A, 2014, 2(7): 2383-9.
[87] HUANG W, LING S, LI C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology [J]. Chem Soc Rev, 2018, 47(17): 6486-504.
[88] KUNZ R I, BRANCALHãO R M C, RIBEIRO L D F C, et al. Silkworm sericin: Properties and biomedical applications [J]. BioMed Res Int, 2016, 2016: 8175701-19.
[89] RASTOGI S, KANDASUBRAMANIAN B. Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization [J]. J Text I, 2020, 111(12): 1794-810.
[90] GIESA T, ARSLAN M, PUGNO N M, et al. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness [J]. Nano Lett, 2011, 11(11): 5038-46.
[91] ZHANG F, LU Q, MING J, et al. Silk dissolution and regeneration at the nanofibril scale [J]. J Mater Chem B, 2014, 2(24): 3879-85.
[92] SEO J W, KIM H, KIM K, et al. Calcium-modified silk as a biocompatible and strong adhesive for epidermal electronics [J]. Adv Funct Mater, 2018, 28(36): 1800802.
[93] BALČYTIS A, RYU M, WANG X, et al. Silk: Optical properties over 12.6 octaves THz-IR-visible-UV range [J]. Materials, 2017, 10(4): 356.
[94] CAI X, LIN J, WANG S. Novel peptide with specific calcium-binding capacity from schizochytrium sp. protein hydrolysates and calcium bioavailability in Caco-2 Cells [J]. Mar Drugs, 2017, 15(1): 3.
[95] XIXI C, LINA Z, SHAOYUN W, et al. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium [J]. Food Funct, 2015, 6(3): 816-23.
[96] JIN H-J, PARK J, VALLUZZI R, et al. Biomaterial films of bombyx mori silk fibroin with poly(ethylene oxide) [J]. Biomacromolecules, 2004, 5(3): 711-7.
[97] YI B, ZHANG H, YU Z, et al. Fabrication of high performance silk fibroin fibers: Via stable jet electrospinning for potential use in anisotropic tissue regeneration [J]. J Mater Chem B, 2018, 6(23): 3934-45.
[98] ZHU X, CUI W, LI X, et al. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering [J]. Biomacromolecules, 2008, 9(7): 1795-801.
[99] XU C Y, INAI R, KOTAKI M, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering [J]. Biomaterials, 2004, 25(5): 877-86.
[100]THERON A, ZUSSMAN E, YARIN A L. Electrostatic field-assisted alignment of electrospun nanofibres [J]. Nanotechnology, 2001, 12(3): 384-90.
[101]LI Q, CHEN G, CUI Y, et al. Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance [J]. ACS Nano, 2021, 15(6): 9955-66.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TP 212.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335721
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
侯星宇. 皮肤-电极界面的传感性能及应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930244-侯星宇-材料科学与工程(6905KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[侯星宇]的文章
百度学术
百度学术中相似的文章
[侯星宇]的文章
必应学术
必应学术中相似的文章
[侯星宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。