[1] 韩林海. 钢管混凝土结构-理论与实践(第三版)[M]. 北京: 科学出版社, 2016.
[2] 张联燕, 李泽生, 程懋方. 钢管混凝土空间桁架组合梁式结构[M]. 北京: 人民交通出版社, 1999.
[3] 中国工程科技知识中心, 干海子特大桥.
[2012-04-22] http://cbe.ckcest.cn.
[4] 聂建国. 钢-混凝土组合结构在海洋工程中的应用研究(英文)[J]. 钢结构(中英文), 2020, 35(1): 20-33.
[5] HONG KONG-ZHUHAI-MACAO BRIDGE.
[2012-09-28]. http://gcjx.hzmb.org.
[6] 中科院海洋研究所. “我国腐蚀状况及控制战略研究”重大咨询项目顺利结题并对外发布成果[J]. 表面工程与再制造, 2017, 17(5): 62.
[7] 蒋晓波. 导管架平台的失效评估分析[D]. 哈尔滨工程大学, 2010.
[8] WANG RH, GUO HC, SHENOI RA . Experimental and numerical study of localized pitting effect on compressive behavior of tubular members[J]. Marine Structures, 2020, 72: 102784.
[9] HAN LH, HOU C, WANG QL. Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: experiments[J]. Journal of Constructional Steel Research, 2012, 71(1): 11-25.
[10] HOU C, HAN LH, ZHAO XL. Full-range analysis on square CFST stub columns and beams under loading and chloride corrosion[J]. Thin-Walled Structures, 2013, 68: 50-64.
[11] HAN LH, HOU CC, WANG QL. Behavior of circular CFST stub columns under sustained load and chloride corrosion[J]. Journal of Constructional Steel Research, 2014, 103: 23-36.
[12] HOU CC, HAN LH, WANG QL, et al. Flexural behavior of circular concrete filled steel tubes (CFST) under sustained load and chloride corrosion[J]. Thin-Walled Structures, 2016, 107: 182-196.
[13] HAN LH, HUA YX, HOU C, et al. Circular concrete-filled steel tubes subjected to coupled tension and chloride corrosion[J]. Journal of Constructional Steel Research, 2017, 143(10): 04017134.
[14] HUA YX, HAN LH, WANG QL, et al. Behaviour of square CFST beam-columns under combined sustained load and corrosion: Experiments[J]. Thin-Walled Structures, 2019, 136: 353-366.
[15] HUA YX, HAN LH, HOU C. Behaviour of square CFST beam-columns under combined sustained load and corrosion: FEA modelling and analysis[J]. Journal of Constructional Steel Research, 2019, 157: 245-259.
[16] 花幼星. 氯离子腐蚀作用下钢管混凝土压(拉)弯构件工作机理研[D]. 清华大学, 2019.
[17] 王庆利, 冯立明, 屈绍娥. 圆钢管混凝土轴压短柱在长期荷载-氯盐腐蚀耦合作用下的试验研究[J]. 土木工程学报, 2015, 48: 48-52.
[18] 王庆利, 李清林, 屈绍娥. 长期荷载下圆钢管混凝土梁的耐腐蚀性能试验研究[J]. 建筑结构学报, 2015, 36: 50-55.
[19] HAN LH, HOU C, HUA YX. Concrete-filled steel tubes subjected to axial compression: Life-cycle based performance[J]. Journal of Constructional Steel Research, 2020, 170: 106063.
[20] 陈梦成, 张凡孟, 黄宏, 等. 酸雨环境下钢管混凝土柱轴压性能研究[J]. 华东交通大学学报, 2015, 32(3): 86-90.
[21] 陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土短柱轴压力学性能试验研究[J]. 建筑结构, 2017, 47(6): 35-40.
[22] 陈梦成, 林博洋, 黄宏. 锈蚀方钢管混凝土短柱轴压承载力研究[J]. 钢结构, 2017, 32(5): 110-116.
[23] 陈梦成, 林博洋, 黄宏, 等. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展, 2018, 20(1): 73-81.
[24] 黄宏, 周璐, 陈梦成. 酸雨腐蚀后圆钢管再生混凝土柱偏压试验研究[J]. 实验力学, 2018, 33(2): 290-298.
[25] 黄宏, 胡志慧, 朱琪. 酸雨环境下方钢管再生混凝土偏心受压试验研究[J]. 铁道学报, 2018, 40(4): 90-97.
[26] 黄宏, 胡志慧, 杨超. 模拟酸雨腐蚀后圆钢管再生混凝土抗弯承载力计算方法研究[J]. 混凝土, 2018(4): 8-12.
[27] 黄宏, 胡志慧, 杨超. 模拟酸雨环境下圆钢管再生混凝土纯弯试验研究[J]. 应用力学学报, 2019, 36(1): 97-103, 256.
[28] 陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学. 2020, 37(02): 34-43.
[29] 许开成, 陈梦成, 何小平. 氯离子腐蚀对钢管混凝土界面黏结性能影响的试验分析[J]. 工业建筑, 2013, 43(1): 71-74.
[30] SHENG J, XIA JW. Effect of simulated pitting corrosion on the tensile properties of steel[J]. Construction and Building Materials, 2017(131): 90-100.
[31] AHN JH, JEON SH, JEONG YS, et al. Evaluation of residual compressive strength and behavior of corrosion-damaged carbon steel tubular members[J]. Materials, 2018, 11(7): 1254.
[32] WANG RH, SHENOI RA. Experimental and numerical study on ultimate strength of steel tubular members with pitting corrosion damage[J]. Marine Structures, 2019, 64: 124-137.
[33] YUAN Y, ZHANG N, LIU HQ, et al. Influence of random pit corrosion on axial stiffness of thin-walled circular tubes[J]. Structures, 2020, 28: 2596-2604.
[34] ZHAO ZW, ZHENG CY, ZHANG JN, et al. Influence of random pitting corrosion on moment capacity of thin-walled circular tubes subjected to compression force[J]. International Journal of Pressure Vessels and Piping, 2021, 189: 104260.
[35] CHANG X, FU L, ZHAO HB, et al.. Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes[J]. Thin-Walled Structures, 2013, 73(12): 273-280.
[36] DING FX, FU L, YU ZW. Behaviors of axially loaded square concrete-filled steel tube (CFST) Stub columns with notch in steel tube[J]. Thin-Walled Structures, 2017(115): 196-204.
[37] HUANG HJ, GUO LH, QU B, et al. Tests of circular concrete-filled steel tubular stub columns with artificial notches representing local corrosions[J]. Engineering Structures, 2021(242): 112598.
[38] PACKER JA. Concrete-filled HSS connections[J]. Journal of Structural Engineering, ASCE, 1995, 121(3):458-467.
[39] UDOMWORARAT P, MIKI C, ICHIKAWA A, et al. Fatigue and ultimate strengths of concrete filled tubular K-joints on truss girder. Journal of Structural Engineering, ASCE, 2000, 46(3): 1627-1635.
[40] MAKINO Y, KUROBANE Y, FUKUSHIMA H, et al. Experimental study on concrete filled tubular joints under axial loads[J]. Tubular Structures IX, 2001: 535-541.
[41] SAKAI Y, HOSAKA T, ISOE A. Experiments on concrete filled and reinforced tubular K-joints of truss girder[J]. Journal of Constructional Steel Research, 2004, 60(3): 683-699.
[42] 刘永健, 周绪红, 刘君平. 矩形钢管混凝土K型节点受力性能试验[J]. 建筑科学与工程学报. 2007, 24(2): 36-42.
[43] 陈宝春, 黄文金. 钢管混凝土K形相贯节点极限承载力试验研究[J]. 土木工程学报, 2009, 42(12): 91-98.
[44] HUANG WJ, FENU L, CHEN BC, et al. Experimental study on K-joints of concrete filled steel tubular truss structures[J]. Journal of Constructional Steel Research, 2015, 107: 182-93.
[45] 侯超. 中空夹层钢管混凝土-钢管K形连接节点工作机理研究[D]. 清华大学, 2014.
[46] HOU C, HAN LH, MU TM. Behaviour of CFDST chord to CHS brace composite K-joints: experiments[J]. Journal of Constructional Steel Research, 2017, 135: 97-109.
[47] 刘永健. 矩形钢管混凝土桁架节点极限承载力试验与设计方法研究[D]. 湖南大学,2003.
[48] 王新毅. 圆钢管-圆钢管混凝土焊接节点抗弯刚度和极限承载力研究[D]. 同济大学, 2009.
[49] 宋谦益. 圆钢管混凝土-钢管K形节点的力学性能研究[D]. 清华大学, 2010.
[50] 郑莲琼. 平面K型圆钢管混凝土桁架节点力学性能分析[J]. 钢结构, 2011, 26(11): 20-23.
[51] 王静峰, 邓权, 邢文彬. 圆钢管混凝土桁架K形节点极限承载力计算方法研究[J]. 建筑钢结构进展, 2018, 20(2): 44-52.
[52] 谢开仲,王红伟,庞锦浩. 钢管混凝土拱桥K形节点破坏模式及极限承载力研究[J]. 钢结构(中英文), 2019, 34(07): 39-45.
[53] SALEH S, HOU C, Han LH, et al. Numerical behaviour of composite K-joints subjected to combined loading and corrosive environment[C]. Advances in Steel-Concrete Composite Structures, 2018.
[54] ZHAO XL, HERION S, PACKER JA, et al. Design guide for circular and rectangular hollow section joints under fatigue loading. CIDECT Publication, No.8, TUV Verlag, Germany, 2000.
[55] International Institute of Welding (IIW). Recommended fatigue design procedure for welded hollow section joints, Lisbon, Portugal; 1999.
[56] European Committee for Standardization. Eurocode3. Design of steel structures -Part 1-9: Fatigue. CEN, Brussels, 2005.
[57] American Petroleum Institute (API). Recommended practice for planning, designing, and constructing fixed offshore platforms, Washington DC, 1993.
[58] American Welding Society (AWS) D1. 1/D1. 1M, structural welding code-steel. ASTM Standard, 2010.
[59] Det Norske Veritas (DNV) RP-C203., D.R.P. Fatigue strength analysis of offshore steel structures, Norway, 2008.
[60] JARDINE B. Fatigue life Enhancement of Tubular Joints by Grout Injection. Offshore technology report-health and safety executive, OTH 92 368, 1993.
[61] UDOMWORARAT P, MIKI C, ICHIKAWA A, et al. Fatigue performance of composite tubular K-joints for truss type bridge. Structure Engineering/Earthquake Engineering, 2002, 19(2): 65-79.
[62] MASHIRI FR, ZHAO XL. Square hollow section (SHS) T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace[J]. Thin-Walled Structures, 2010, 48: 150-158.
[63] WANG K, TONG LW, ZHU J, et al. Fatigue behavior of welded T-joints with a CHS brace and CFCHS chord under axial loading in the brace[J]. Journal of Bridge Engineering, 2013, 18: 142-152.
[64] QIAN X, JITPAIROD K, MARSHALL P, et al. Fatigue and residual strength of concrete-filled tubular X-joints with full capacity welds. Journal of Constructional Steel Research, 2014, 100: 21-35.
[65] TONG L, XU G, YANG D, et al. Fatigue behavior and design of welded tubular T-joints with CHS brace and concrete-filled chord. Thin-Walled Structures, 2017, 120: 180-90.
[66] 钟新谷, 杨胜, 石卫华. K型钢管混凝土节点疲劳性能试验研究[J]. 中国工程科学, 2011, 13(9) : 97-100.
[67] 刁砚, 范文理. 钢管混凝土管节点疲劳试验研究[J]. 建筑结构, 2013, 43(5): 45-47.
[68] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管混凝土K形节点足尺模型疲劳性能试验[J]. 建筑结构学报, 2019, 41(10): 102-111.
[69] JIANG L, LIU YJ, FAM A. Fatigue behaviour of non-integral Y-joint of concrete-filled rectangular hollow section continuous chord stiffened with perfobond ribs[J]. Engineering Structures, 2019, 191: 611-624.
[70] JIANG L, LIU YJ, FAM A. Fatigue Behavior of Integral Built-Up Box Y-Joints between Concrete-Filled Chords with Perfobond Ribs and Hollow Braces[J]. Journal of Structural Engineering, 2020, 146(3): 04019218.
[71] HAIGH BP. Experiments on the fatigue of brasses [J]. Journal of the Institute of Metals, 1917 18: 55-77.
[72] MCADAM DJ, Proc ASTM. 1926, 26: 224-254.
[73] BARSOM JM. Fatigue behavior of weathered steel components[J]. Transportation Research Record, 1984.
[74] 郑文龙, 朱国培, 欧阳怀瑾, 等. 强度对两种低合金钢在海水中腐蚀疲劳行为的影响[J]金属学报. 1986(03): 95-102.
[75] 曹建安, 文雨松. 锈蚀钢筋的疲劳试验研究[J]. 长沙铁道学院学报, 1998(04): 15-18.
[76] DOLLEY EJ, LEE B, WEI RP. The effect of pitting corrosion on fatigue life[J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(7): 555-560.
[77] APOSTOLOPOULOS CA, PAPADOPOULOS MP. Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400[J]. Construction and Building Materials, 2005, 21(4): 855-864.
[78] BERETTA S, CARBONI M, FIORE G, et al. Corrosion-fatigue of A1N railway axle steel exposed to rainwater[J]. International Journal of Fatigue, 2009, 32(6): 952-961.
[79] 刘彦国, 马进, 孙先明. 低合金钢在不同条件下的疲劳行为[J]. 力学与实践, 2010, 06: 49-53.
[80] KUNZ L, LUKAS P, KLUSAK J. Fatigue Strength of Weathering Steel[J]. Materials Science. 2012,18(1): 18-22.
[81] 徐善华, 曾桃桃, 孔正义. 腐蚀对Q235钢疲劳性能影响的试验研究[C]. 中国结构工程学会, 2012: 159-162 .
[82] 张春涛. 腐蚀环境和风振疲劳耦合作用下输电塔线体系疲劳性能研究[D]. 重庆大学, 2012.
[83] 梁健宇, 姚谏, 张玉玲. 免涂装耐候钢腐蚀后的疲劳试验研究[J]. 工业建筑, 2018(48): 149-154.
[84] HAN LH., HE SH, LIAO FY. Performance and calculations of concrete filled steel tubes (CFST) under axial tension. Journal of Constructional Steel Research, 2011, 67(11), 1699-1709.
[85] DAI, XH, Lam D, JAMALUDDIN N, et al. Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Structures, 2014, 77: 26-35.
[86] HAN LH, TAO Z, LIU W. Effects of sustained load on concrete-filled hollow structural steel columns[J]. Journal of structural engineering, 2004, 130(9): 1392-1404.
[87] ICHINOSE LH, WATANABE E, NAKAI H. An experimental study on creep of concrete filled steel pipes[J]. Journal of Constructional Steel Research, 2001, 57(4): 453-466.
[88] UY B. Static long-term effects in short concrete-filled steel box columns under sustained loading[J]. ACI Structural Journal, 2001, 98(1): 96-104.
[89] NAKAI T, MATSUSHITA H, YAMAMOTO N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers[J]. Marine Structures, 2004, 17(5): 403-432.
[90] 王波, 袁迎曙, 李富民, 等. 氯盐锈蚀钢筋的屈服强度退化分析及其概率模型[J]. 建筑材料学报. 2011, 14(05): 597-603.
[91] PIDAPARTI RM, PATEL RK. Investigation of a single pit/defect evolution during the corrosion process[J] . Corrosion Science, 2010, 52(9): 3150-3153.
[92] HUGHES A, MUSTER TH, BOAG A, et al. Co-operative corrosion phenomena[J]. Corrosion Science, 2010, 52(3): 665–668.
[93] APOSTOLOPOULOS CA, DEMIS S, PAPADAKIS VG. Chloride-induced corrosion of steel reinforcement-Mechanical performance and pit depth analysis[J]. Construction and Building Materials, 2013, 38: 139-146.
[94] HUANG Y, ZHANG Y, LIU G, et al. Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression[J]. Ocean Engineering, 2010, 37: 1503-1512.
[95] PAIK JK, THAYAMBALLI AK, Park YI, et al. A time-dependent corrosion wastage model for seawater ballast tank structures of ships[J]. Corrosion Science, 2004, 46(2): 471-486.
[96] SOUTHWELL CR, BULTMAN JD, HUMMER CW. Estimating of service life of steel in seawater[M]. New Jersey: Noyes Data Corporation, 1979, 374-387.
[97] SOUTHWELL CR, BULTMAN JD. Atmospheric Corrosion[M]. New York: John Weiley&Sons, 1982, 855-934.
[98] MELCHERS RE. Corrosion uncertainty modelling for steel structures[J]. Journal of Constructional Steel Research Research, 1999(52): 3-19.
[99] MELCHERS RE. Probabilistic modelling of immersion marine corrosion[M]. In: Shiraishi N, 1998, 1143-1149.
[100] 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, 25(1): 1-6.
[101] MELCHERS RE. Pitting corrosion of mild steel in marine immersion environment-Part 1: Maximum pit depth. Corrosion, 2004, 60(9): 824-836.
[102] MELCHERS RE. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth. Corrosion, 2004, 60(10): 937-944.
[103] 秦圣平, 崔维成, 沈凯. 船舶结构时变可靠性分析的一种非线性腐蚀模型[J]. 船舶力学, 2003, 7(1): 94-103.
[104] RIVAS D, CALEYO F, VALOR A, et al. Extreme value analysis applied to pitting corrosion experiments in low carbon steel: Comparison of block maxima and peak over threshold approaches[J]. Corrosion Science, 2008, 50(11): 3193-3204.
[105] 张威. 锈蚀钢筋表面特征的统计分析及其力学性能退化模型研究[D]. 西安建筑科技大学 2013.
[106] 王燕舞, 吴晓源, 张雨华, 等. 船舶结构钢海洋环境点蚀模型研究之二:实船蚀坑形态与径深比时变模型[J]. 船舶力学. 2007(05): 735-743.
[107] 陆春华, 杨金木, 延永东, 等. 基于分形理论的锈蚀钢筋表面轮廓分布特征[J]. 江苏大学学报(自然科学版), 2018, (1): 1671-7775.
[108] 何剑侠. 随机点蚀圆钢管构件力学性能劣化的数值分析[D]. 东南大学, 2018.
[109] HAN LH, YAO GH, TAO Z. Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 2007, 45(1): 24-36.
[110] 韩林海, 牟廷敏, 王法承, 等. 钢管混凝土混合结构设计原理及其在桥梁工程中的应用[J]. 土木工程学报. 2020, 53(5): 1-24.
[111] 陈绍蕃. 钢结构稳定设计指南[M]. 北京: 中国建筑工业出版社, 2004.
[112] Deutsches Institüt fürNormung. DIN 18800 Teil 2, Stahlbauten, Stabilitätsfälle, Knicken Von Stäben und Stabworken. 1990.
[113] 艾智能. 钢管混凝土拱桥节点疲劳寿命研究[D]. 西南交通大学, 2005.
[114] 孙传祺. 钢管混凝土K型间隙焊接节点热点应力与承载力试验研究[D]. 同济大学, 2008.
[115] XU F, CHEN J, JIN WL. Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J]. Thin-Walled Structures, 2015, 93:149-157.
[116] 任松波. 点蚀坑演化过程及其对锈蚀钢材疲劳性能影响研究[D]. 西安建筑科技大学, 2016.
[117] OMORI T, MORITA T, OKADA K, et al. Relationship between local stress amplitude at contact edges and fretting fatigue strength of austenitic stainless steel JIS SUS316[J]. Tribology International, 2015, 92: 328-334.
[118] LAZ PJ, HILLBERRY BM. Fatigue life prediction from inclusion initiated cracks[J]. International Journal of Fatigue 1998, 20(4): 263-270.
[119] GRUENBERG KM, CRAIG BA, HILLBERRY BM. Predicting fatigue life of pre-corroded 2024-T3 aluminum[J]. International Journal of Fatigue, 2004, 26: 629-640.
[120] WALDE K, BROCKENBROUGH JR, HILLBERRY BM. Characterization of pitting damage and predication of remaining fatigue life[J]. International Journal of Fatigue, 2008, 30: 106-118.
[121] 刘建中, 陈勃, 叶序彬,等. 含腐蚀预损伤铝合金2024-T62的疲劳断裂行为及基于断裂力学的寿命预测[J]. 航空学报, 2011, 32(1): 107-116.
[122] 黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究[D]. 上海交通大学, 2013.
修改评论