中文版 | English
题名

CHITOSAN FILMS AS FLEXIBLE SUBSTRATE TO FABRICATE ELECTRONIC SENSING DEVICES

其他题名
壳聚糖薄膜作为柔性衬底制备电子传感器件
姓名
姓名拼音
XIE Hongjie
学号
11930595
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
Aung Ko Ko KYAW
导师单位
电子与电气工程系
论文答辩日期
2022-05-14
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

 

目前电子信息产业仍然以刚性器件为主体,在具有成熟的加工技术和产业链的同时也存在着一定的局限性。相比于刚性器件,柔性电子设备可以承受各种变形,例如拉伸、挤压和弯曲,适用于复杂的工作表面,可以广泛应用于信号传感、生物医疗、太阳能电池、可穿戴电子等多个领域,为现代电子学的发展提供了新的思路。柔性电子传感器件的制备首先是选择合适的柔性材料制作衬底,具有天然可降解特性的柔性材料比如纤维素、壳聚糖等多糖物质,能够减少过多电子工业产品带来的污染,降低了作为植入式电子医疗器件带来的风险。壳聚糖具有独特的抗菌性、生物相容性和良好的可降解能力,被人们认为是一种具有很大发展潜力的材料,但是由于天然的壳聚糖几乎不溶于水,成膜以后的机械能力较弱,它的应用受到了很大的限制。

本研究选取壳聚糖作为研究对象,通过对其进行季铵化改性和增塑化改性,希望能提升壳聚糖的溶解能力和机械能力。以壳聚糖为原材料,通过加入缩水甘油基三甲基氯化铵的方法对壳聚糖进行季铵化改性,提高了壳聚糖的水溶性,拓宽了壳聚糖的可应用范围。在壳聚糖被季铵化改性的基础上,实验通过引入甘油作为增塑剂,以单宁酸作为交联剂对季铵化壳聚糖进行塑化改性,提高了壳聚糖薄膜的可拉伸断裂率和薄膜的表面粘附力。选用来自PEDOT:PSS这种具有高透明度和良好导电性能的聚合物作为导电油墨,通过丝网印刷的方法在柔性薄膜的表面进行印刷形成薄膜器件。实验通过紫外/可见分光光度计对印刷后壳聚糖薄膜的光学性能进行表征,发现印刷后的壳聚糖薄膜依然具有良好的透明度;同时通过对薄膜表面的电学性能表征,发现在经过双层PEDOT:PSS印刷后的薄膜表面透明电极拥有优秀的导电能力。

对壳聚糖薄膜样品进行测试,发现在弱切割作用下的壳聚糖薄膜具有良好的自愈合能力,能在短时间内恢复表面形貌;如果给予一定的水分或者保持较高的空气湿度,能提升薄膜的自愈合性能。通过在柔性薄膜的表面涂覆设计好的功能化图案,形成一种简单的柔性电容传感器,并实现了信号的感应,证实了壳聚糖薄膜被用来作为电子传感器件衬底的可行性。

 

 

其他摘要

At present, the electronic information industry is still dominated by rigid devices, which have matured processing technologies and industrial chains while also having certain limitations. Compared with rigid devices, flexible electronic devices can withstand various deformations, such as stretching, squeezing and bending, and are suitable for complex working surfaces. It can be widely used in many fields such as signal sensing, biomedical, solar cells, wearable electronics, etc. Flexible electronics provide a new idea for the development of modern electronics. The preparation of flexible electronic sensing devices begins with the selection of suitable flexible materials to make substrates. Flexible materials can reduce the pollution of electronic waste with natural degradable properties such as cellulose, chitosan and other polysaccharide substances. It also reduces the risk of implantable electronic medical devices. With unique antibacterial properties, biocompatibility and degradability, chitosan is considered as a flexible material with great potential for development. However, its application is greatly limited by the fact that natural chitosan is almost insoluble in water and has weak mechanical property after film formation.

In the thesis, chitosan was selected as an analysis object, and its mechanical and other properties were modified with quaternization and plasticization. Upon modification the solubility and mechanical property of chitosan could be enhanced. By adding glycidyl trimethyl ammonium chloride (GTMAC) into the raw material, the quaternization modification of chitosan improved the water solubility of chitosan and broadened the applicable range of chitosan. Based on the modification of chitosan by quaternization, the experiments improved the elongation at break and the surface adhesion of chitosan films by introducing glycerol as a plasticizer and tannic acid as a cross-linking agent to plasticize quaternized chitosan. PEDOT:PSS, the polymer which has high transparency and good electrical conductivity, was selected as the conductive ink and printed on the surface of the flexible films by screen printing to form the film devices. The optical properties of the printed chitosan film were characterized by UV/Vis spectrophotometer, and it was found that the printed chitosan film still has good transparency. Meanwhile, the electrical properties of the film surface were characterized, and it showed that the transparent electrode on the surface of the film after double-layer PEDOT:PSS printing has excellent electrical property.

The chitosan film samples were tested and found to have good self-healing ability under the weak cutting effect, which can restore the surface morphology in a short period of time; the self-healing performance of the film can be enhanced if a certain amount of moisture is supplied or the air humidity is kept high. A simple flexible capacitive sensor was formed by coating a designed functionalized pattern on the surface of the flexible film, and signal sensing was achieved, confirming the feasibility of chitosan film being used as a substrate for electronic sensing devices.

 

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] ALI KHAN M U, RAAD R, TUBBAL F, et al. Bending analysis of polymer-based flexi-ble antennas for wearable, general IoT applications: A Review[J]. Polymers, 2021, 13(3):357.
[2] SEKINE T, SUGANO R, TASHIRO T, et al. Fully printed wearable vital sensor for hu-man pulse rate monitoring using ferroelectric polymer[J]. Scientific Reports, 2018, 8(1):4442.
[3] CHEN S, QI J, FAN S, et al. Flexible wearable sensors for cardiovascular health moni-toring[J]. Advanced Healthcare Materials, 2021, 10(17):2100116.
[4] LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: A review of flexible and stretcha-ble electronics for wearable health monitoring[J]. ACS Nano, 2017, 11(10):9614-9635.
[5] LIM H, KIM H, QAZI R, et al. Advanced soft materials, sensor integrations, and appli-cations of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15):1901924.
[6] KIM K, KIM B, LEE C H. Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems[J]. Advanced Materials, 2019, 32(15):1902051.
[7] KOSKI K, VENA A, SYDANHEIMO L, et al. Design and implementation of electro-textile ground planes for wearable UHF RFID patch tag antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12:964-967.
[8] BUWALDA S J, VERMONDEN T, HENNINK W E. Hydrogels for therapeutic delivery: current developments and future directions[J]. Biomacromolecules, 2017, 18(2):316-330.
[9] WANG W, MENG Q, LI Q, et al. Chitosan derivatives and their application in biomedi-cine[J]. International Journal of Molecular Sciences, 2020, 21(2):487.
[10] GUO L, WANG T, WU Z, et al. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks[J]. Ad-vanced Materials, 2020, 32(45):2004805.
[11] KIM H, KWON G, PARK C, et al. Anti-counterfeiting tags using flexible substrate with gradient micropatterning of silver nanowires[J]. Micromachines, 2022, 13(2):168.
[12] AKAGI T, DOHTA S, MORIMOTO T, et al. Development of compact flexible dis-placement sensors using ultrasonic sensor for wearable actuators[J]. MATEC Web of Conferences, 2016, 51(5):2002.
[13] HOU X B, MAO Y Q, ZHANG R B, et al. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection [J]. Chemical Engineering Journal, 2021, 417(9):129341.
[14] CASTRO A T, SHARMA S K. Inkjet-printed wideband circularly polarized microstrip patch array antenna on a PET film flexible substrate material[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1):176-179.
[15] BEN J, SONG Z, LIU X, et al. Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors[J]. Nanoscale Research Letters, 2020, 15(1):1-8.
[16] LIANG A, ZHANG J, WANG F, et al. Transparent HfOx-based memristor with robust flexibility and synapse characteristics by interfacial control of oxygen vacancies move-ment[J]. Nanotechnology, 2021, 32(14):145202.
[17] ORTEGA L, LLORELLA A, ESQUIVEL J P, et al. Paper-based batteries as conductivity sensors for single-use applications[J]. ACS Sensors, 2020, 5(6):1743-1749.
[18] LI J, TIAN X, HUA T, et al. Chitosan natural polymer material for improving antibacte-rial properties of textiles[J]. ACS Applied Bio Materials, 2021, 4(5):4014-4038.
[19] SOE H M, ABD MANAF A, MATSUDA A, et al. Development and fabrication of high-ly flexible, stretchable, and sensitive strain sensor for long durability based on silver na-noparticles-polydimethylsiloxane composite[J]. Journal of Materials Science Materials in Electronics, 2020, 31(14):11897-11910.
[20] BAI Y, ZHAO W, BI S, et al. Preparation and application of cellulose gel in flexible su-percapacitors[J]. The Journal of Energy Storage, 2021, 42 :103058.
[21] WANG F, JIANG J, SUN F, et al. Flexible wearable graphene/alginate composite non-woven fabric temperature sensor with high sensitivity and anti-interference[J]. Cellulose, 2020, 27(4):2369-2380.
[22] YU Z, LI B, CHU J, et al. Silica in situ enhanced PVA/chitosan biodegradable films for food packages[J]. Carbohydrate Polymers, 2018, 184:214-220.
[23] PANG Y, QIN A, LIN X, et al. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo[J]. Oncotarget, 2017, 8(22): 35583-35591.
[24] WANG J, WANG L, YU H, et al. Recent progress on synthesis, property and applica-tion of modified chitosan: An overview[J]. International Journal of Biological Macro-molecules, 2016, 88:333-344.
[25] PRAVEEN E, PETER I J, KUMAR A M, et al. Performance of ZnO/ZnS nanocomposite based dye-sensitized solar cell with chitosan-polymer electrolyte[J]. Materials Today: Proceedings, 2021, 35:27-30.
[26] KRAVANJA G, PRIMOZIC M, KNEZ Z, et al. Chitosan-based (nano)materials for nov-el biomedical applications[J]. Molecules, 2019, 24(10):1960.
[27] D'AMATO R, POLIMADEI A, TERRANOVA G, et al. Humidity sensing by chitosan-coated fibre bragg gratings (FBG)[J]. Sensors, 2021, 21(10):3348.
[28] YOUNES I, RINAUDO M. Chitin and chitosan preparation from marine sources. Struc-ture, properties and applications[J]. Marine Drugs, 2015, 13(3):1133-1174.
[29] MUZZARELLI R A A, BOUDRANT J, MEYER D, et al. Current views on fungal chi-tin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bi-centennial[J]. Carbohydrate Polymers, 2012, 87(2):995-1012.
[30] JIN X, YANG J, WANG Y, et al. Preparation and biomedical applications of alginate-chitosan microspheres[J]. Journal of International Stomatology, 2018, 45(4): 414-419.
[31] BASTIAENS L, SOETEMANS L, D'HONDT E, et al. Sources of chitin and chitosan and their isolation[M]. John Wiley & Sons, Ltd, 2019:2-12.
[32] LIU Q, XIE W, JIA Z, et al. Research progress of chitosan nanofiber membrane prepar-ing by electrospinning[J]. New Chemical Materials, 2021, 49(5):214-6,21.
[33] ANITHA A, SOWMYA S, KUMAR P T S, et al. Chitin and chitosan in selected bio-medical applications[J]. Progress in Polymer Science, 2014, 39(9):1644-1667.
[34] FAN M, HU Q, XIE J. Preparation and structure of chitosan swellable in alkali solution by ultrasonic treatment[J]. Applied Mechanics and Materials, 2011, 55-57:456-460.
[35] KIM H-R, JANG J-W, PARK J-W. Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent[J]. Journal of Hazardous Materials, 2016, 317:608-616.
[36] LINFANG A I, GUANGHUI W. Progress with respect to modification and application of chitosan[J]. China Surfactant Detergent and Cosmetics, 2011, 41(4):289-293.
[37] WANG X, DONG A, LIN Q. Progress in chitosan alkylation[J]. Chemical World, 2010, (6):370-374.
[38] YI H E, TI H A A H M, YIN B A Y B L. Preparation of amphiphilic carboxy methyl chitosan [J]. Journal of Shenyang Agricultural University, 2009, 40(2):251-253.
[39] KERCH G, KORKHOV V. Effect of storage time and temperature on structure, me-chanical and barrier properties of chitosan-based films[J]. European Food Research and Technology, 2011, 232(1):17-22.
[40] WANG Y, XIE J, XUE B, et al. Research progresses of chitosan food packaging film[J]. New Chemical Materials, 2015, 43(9):7-9.
[41] VAN DEN BROEK L A, KNOOP R J, KAPPEN F H, et al. Chitosan films and blends for packaging material[J]. Carbohydrate Polymers, 2015, 116:237-242.
[42] WANG H, MA X, HAO Y. Electronic devices for Human-machine interfaces[J]. Ad-vanced Materials Interfaces, 2017, 4(4): 16007-16009.
[43] ZHU Y, XUAN H, REN J, et al. Humidity responsive self-healing based on intermo-lecular hydrogen bonding and metal-ligand coordination[J]. RSC Advances, 2016, 6(92):89757-89763.
[44] WANG D-P, ZHAO Z-H, LI C-H. Universal self-healing poly(dimethylsiloxane) poly-mer crosslinked predominantly by physical entanglements[J]. ACS Applied Materials and Interfaces, 2021, 13(26): 31129-31139.
[45] YAN K, XU F, WANG C, et al. A multifunctional metal-biopolymer coordinated dou-ble network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties[J]. Biomaterials Science, 2020, 8(11): 31932-31901.
[46] CHEN Y, LIU T, WANG G, et al. Highly swelling, tough intelligent self-healing hydro-gel with body temperature-response[J]. European Polymer Journal, 2020, 140: 110047.
[47] DING F, SHI X, WU S, et al. Flexible polysaccharide hydrogel with pH-regulated recov-ery of self-Healing and mechanical properties[J]. Macromolecular Materials and Engi-neering, 2017, 302(11):17002-17021.
[48] YING H, ZHANG Y, CHENG J. Dynamic urea bond for the design of reversible and self-healing polymers[J]. Nature Communications, 2014, 5(1):3218.
[49] NADGORNY M, COLLINS J, XIAO Z, et al. 3D-printing of dynamic self-healing cryo-gels with tuneable properties[J]. Polymer Chemistry, 2018, 9(13):1684-1692.
[50] GHOSH B, CHELLAPPAN K V, URBAN M W. Self-healing inside a scratch of ox-etane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks[J]. Journal of Mate-rials Chemistry, 2011, 21(38):14473-14486.
[51] CAO J, LU C, ZHUANG J, et al. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions[J]. Angewandte Chemie-International Edition, 2017, 56(30):8795-8800.
[52] PENG Z-X, WANG L, DU L, et al. Adjustment of the antibacterial activity and bio-compatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium[J]. Carbohydrate Polymers, 2010, 81(2): 275-283.
[53] SONG F, KONG Y, SHAO C, et al. Chitosan-based multifunctional flexible hemostatic bio-hydrogel[J]. Acta Biomaterialia, 2021, 136:170-183.
[54] OHTA Y, KONDO Y, KAWADA K, et al. Synthesis and antibacterial activity of qua-ternary ammonium salt-type antibacterial agents with a phosphate group[J]. Journal of Oleo Science, 2008, 57(8):445-452.
[55] CAZON P, VAZQUEZ M. Mechanical and barrier properties of chitosan combined with other components as food packaging film[J]. Environmental Chemistry Letters, 2020, 18(2):257-267.
[56] Reis A D, Yoshida C P, Vera S, et al. Study of diffusion and water vapor permeability in chitosan films and chitosan emulsified films[J]. Defect & Diffusion Forum, 2012, 326-328:170-175.
[57] ZHANG Y, XIONG Z, GE H, et al. Core-shell bioderived flame retardants based on chi-tosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of pol-ylactic acid[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(16): 6402-6412.
[58] CHEN M, RUNGE T, WANG L, et al. Hydrogen bonding impact on chitosan plasticiza-tion[J]. Carbohydrate Polymers, 2018, 200:115-121.
[59] CHEN G, HUANG J, GU J, et al. Highly tough supramolecular double network hydro-gel electrolytes for an artificial flexible and low-temperature tolerant sensor[J]. Journal of Materials Chemistry A, 2020, 8(14):6776-6784.
[60] LIU Y, YU F. Preparation and characterization of genipin-crosslinked chi-tosan/poly(ethylene glycol) composites films[J]. Asian Journal of Chemistry, 2012, 24(5):2020-2024.
[61] QIN C, DU Y, ZONG L, et al. Effect of hemicellulase on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability, 2003, 80(3):435-441.
[62] LI F, LIU W G, DE YAO K. Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour[J]. Bi-omaterials, 2002, 23(2):343-347.
[63] CHEN Y, LI J, LI Q, et al. Enhanced water-solubility, antibacterial activity and bio-compatibility upon introducing sulfobetaine and quaternary ammonium to chitosan [J]. Carbohydrate Polymers, 2016, 143:246-253.
[64] QIN C, XIAO Q, LI H, et al. Calorimetric studies of the action of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride on the growth of microorganisms[J]. In-ternational Journal of Biological Macromolecules, 2004, 34(1):121-126.
[65] SANKRI A, ARHALIASS A, DEZ I, et al. Thermoplastic starch plasticized by an ionic liquid[J]. Carbohydrate Polymers, 2010, 82(2):256-263.
[66] DOMJAN A, BAJDIK J, PINTYE-HODI K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy[J]. Macro-molecules, 2009, 42(13):4667-4673.
[67] KAMMOUN M, HADDAR M, KALLEL T K, et al. Biological properties and biodegra-dation studies of chitosan biofilms plasticized with PEG and glycerol[J]. International Journal of Biological Macromolecules, 2013, 62:433-438.
[68] OTVAGINA K V, MOCHALOVA A E, SAZANOVA T S, et al. Preparation and charac-terization of facilitated transport membranes composed of chitosan-styrene and chi-tosan-acrylonitrile copolymers modified by methylimidazolium based ionic liquids for CO2 separation from CH4 and N2[J]. Membranes, 2016, 6(2):31.
[69] PRASAD B, MANDAL B. Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 sepa-ration[J]. Journal of Industrial & Engineering Chemistry, 2018, 66: 419-429.
[70] SILVA S S, MANO J F, REIS R L. Ionic liquids in the processing and chemical modifi-cation of chitin and chitosan for biomedical applications[J]. Green Chemistry, 2017, 19(5):1208-1220.
[71] CUI L, GAO S, SONG X, et al. Preparation and characterization of chitosan mem-branes[J]. RSC Advances, 2018, 8(50): 433-439.
[72] FU R, JI X, REN Y, et al. Antibacterial blend films of cellulose and chitosan prepared from binary ionic liquid system[J]. Fibers and Polymers, 2017, 18(5):852-858.
[73] PAIVA A, CRAVEIRO R, AROSO I, et al. Natural deep eutectic solvents - solvents for the 21st century[J]. ACS Sustainable Chemistry and Engineering, 2014, 2(5):1063-1071.
[74] GALVIS-SANCHEZ A C, SOUSA A M M, HILLIOU L, et al. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development[J]. Green Chemistry, 2016, 18(6):1571-1580.
[75] SOKOLOVA M P, SMIRNOV M A, SAMAROV A A, et al. Plasticizing of chitosan films with deep eutectic mixture of malonic acid and choline chloride[J]. Carbohydrate Polymers, 2018, 197:548-557.
[76] TAN W, DONG F, ZHANG J, et al. Physical and antioxidant properties of edible chi-tosan ascorbate films[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9):2530-2539.
[77] HILLBERG A L, TABRIZIAN M. Biorecognition through layer-by-layer polyelectrolyte assembly: In-situ hybridization on living cells[J]. Biomacromolecules, 2006, 7(10):2742-2750.
[78] MENG Q, HEUZEY M-C, CARREAU P J. Hierarchical structure and physicochemical properties of plasticized chitosan[J]. Biomacromolecules, 2014, 15(4): 1216-1224.
[79] WU W, HAICK H. Materials and wearable devices for autonomous monitoring of phys-iological markers[J]. Advanced Materials, 2018, 30(41):1705024.
[80] GONG L, WANG J, XIANG L, et al. Characterizing foulants on slotted liner and prob-ing the surface interaction mechanisms in organic media with implication for an anti-fouling strategy in oil production[J]. Fuel, 2021, 290:120008.
[81] Oxford Instruments Asylum Research, Inc. Products of OIAR[DB/OL].
[2012-05]. https://afm.oxinst.com/products/mfp-3d-afm-systems/.
[82] CAO N, FU Y, HE J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid[J]. Food Hydrocolloids, 2007, 21(4):575-584.
[83] AHMAD T, GURIA C, MANDAL A. Optimal synthesis and operation of low-cost poly-vinyl chloride/bentonite ultrafiltration membranes for the purification of oilfield pro-duced water[J]. Journal of Membrane Science, 2018, 564:859-877.
[84] ZHU B, MA D, WANG J, et al. Structure and properties of semi-interpenetrating net-work hydrogel based on starch[J]. Carbohydrate Polymers, 2015, 133:448-455.
[85] WANG X, ZHOU J, ZHU Y, et al. Assembly of silver nanowires and PEDOT:PSS with hydrocellulose toward highly flexible, transparent and conductivity-stable conductors[J]. Chemical Engineering Journal, 2020, 392:123644.
[86] ZHAO D, ZHANG Q, CHEN W, et al. Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(15):13213-13222.
[87] KIATKAMJORNWONG S, PUTTHIMAI P, NOGUCHI H. Comparison of textile print quality between inkjet and screen printings[J]. Surface Coatings International Part B Coatings Transactions, 2005, 88(1):25-34.
[88] CHENG H, HUANG Y, CHENG Q, et al. Self-healing graphene oxide based functional architectures triggered by moisture[J]. Advanced Functional Materials, 2017, 27(42):1703096.
[89] WU L, LI L, QU M, et al. Mussel-inspired self-adhesive, antidrying, and antifreezing poly(acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing ap-plication[J]. ACS Applied Polymer Materials, 2020, 2(8):3094-3106.
[90] XU D, SHEN H-J, XIE J-J, et al. Screen printing, modification via post-treatment and application in dye-sensitized solar cells of PEDOT:PSS films[J]. Acta Polymerica Sinica, 2019, 50(1):36-43.
[91] LI J, XIE B, XIA K, et al. Facile synthesis and characterization of cross-linked chitosan quaternary ammonium salt membrane for antibacterial coating of piezoelectric sen-sors[J]. International Journal of Biological Macromolecules, 2018, 120:745-752.
[92] LI C, XU H, CHEN S-C. Design of a precision multi-layer roll-to-roll printing system [J]. Precision Engineering, 2020, 66: 564-576.
[93] OU Y, TIAN M. Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications[J]. Journal of Materials Chemistry B, 2021, 9(38): 7955-7971.
[94] XU C, ZHAN W, TANG X, et al. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages[J]. Polymer Testing, 2018, 66: 155-163.
[95] PARK J, KIM M, LEE Y, et al. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli[J]. Science advances, 2015, 1(9):e1500661.
[96] LI R Z, HU A, ZHANG T, et al. Direct writing on paper of foldable capacitive touch pads with silver nanowire inks[J]. ACS Applied Materials & Interfaces, 2014, 6(23):21721-21729.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TN04
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335728
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Xie HJ. CHITOSAN FILMS AS FLEXIBLE SUBSTRATE TO FABRICATE ELECTRONIC SENSING DEVICES[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930595-谢鸿杰-电子与电气工程(2557KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[谢鸿杰]的文章
百度学术
百度学术中相似的文章
[谢鸿杰]的文章
必应学术
必应学术中相似的文章
[谢鸿杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。