[1] ALI KHAN M U, RAAD R, TUBBAL F, et al. Bending analysis of polymer-based flexi-ble antennas for wearable, general IoT applications: A Review[J]. Polymers, 2021, 13(3):357.
[2] SEKINE T, SUGANO R, TASHIRO T, et al. Fully printed wearable vital sensor for hu-man pulse rate monitoring using ferroelectric polymer[J]. Scientific Reports, 2018, 8(1):4442.
[3] CHEN S, QI J, FAN S, et al. Flexible wearable sensors for cardiovascular health moni-toring[J]. Advanced Healthcare Materials, 2021, 10(17):2100116.
[4] LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: A review of flexible and stretcha-ble electronics for wearable health monitoring[J]. ACS Nano, 2017, 11(10):9614-9635.
[5] LIM H, KIM H, QAZI R, et al. Advanced soft materials, sensor integrations, and appli-cations of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15):1901924.
[6] KIM K, KIM B, LEE C H. Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems[J]. Advanced Materials, 2019, 32(15):1902051.
[7] KOSKI K, VENA A, SYDANHEIMO L, et al. Design and implementation of electro-textile ground planes for wearable UHF RFID patch tag antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12:964-967.
[8] BUWALDA S J, VERMONDEN T, HENNINK W E. Hydrogels for therapeutic delivery: current developments and future directions[J]. Biomacromolecules, 2017, 18(2):316-330.
[9] WANG W, MENG Q, LI Q, et al. Chitosan derivatives and their application in biomedi-cine[J]. International Journal of Molecular Sciences, 2020, 21(2):487.
[10] GUO L, WANG T, WU Z, et al. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks[J]. Ad-vanced Materials, 2020, 32(45):2004805.
[11] KIM H, KWON G, PARK C, et al. Anti-counterfeiting tags using flexible substrate with gradient micropatterning of silver nanowires[J]. Micromachines, 2022, 13(2):168.
[12] AKAGI T, DOHTA S, MORIMOTO T, et al. Development of compact flexible dis-placement sensors using ultrasonic sensor for wearable actuators[J]. MATEC Web of Conferences, 2016, 51(5):2002.
[13] HOU X B, MAO Y Q, ZHANG R B, et al. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection [J]. Chemical Engineering Journal, 2021, 417(9):129341.
[14] CASTRO A T, SHARMA S K. Inkjet-printed wideband circularly polarized microstrip patch array antenna on a PET film flexible substrate material[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1):176-179.
[15] BEN J, SONG Z, LIU X, et al. Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors[J]. Nanoscale Research Letters, 2020, 15(1):1-8.
[16] LIANG A, ZHANG J, WANG F, et al. Transparent HfOx-based memristor with robust flexibility and synapse characteristics by interfacial control of oxygen vacancies move-ment[J]. Nanotechnology, 2021, 32(14):145202.
[17] ORTEGA L, LLORELLA A, ESQUIVEL J P, et al. Paper-based batteries as conductivity sensors for single-use applications[J]. ACS Sensors, 2020, 5(6):1743-1749.
[18] LI J, TIAN X, HUA T, et al. Chitosan natural polymer material for improving antibacte-rial properties of textiles[J]. ACS Applied Bio Materials, 2021, 4(5):4014-4038.
[19] SOE H M, ABD MANAF A, MATSUDA A, et al. Development and fabrication of high-ly flexible, stretchable, and sensitive strain sensor for long durability based on silver na-noparticles-polydimethylsiloxane composite[J]. Journal of Materials Science Materials in Electronics, 2020, 31(14):11897-11910.
[20] BAI Y, ZHAO W, BI S, et al. Preparation and application of cellulose gel in flexible su-percapacitors[J]. The Journal of Energy Storage, 2021, 42 :103058.
[21] WANG F, JIANG J, SUN F, et al. Flexible wearable graphene/alginate composite non-woven fabric temperature sensor with high sensitivity and anti-interference[J]. Cellulose, 2020, 27(4):2369-2380.
[22] YU Z, LI B, CHU J, et al. Silica in situ enhanced PVA/chitosan biodegradable films for food packages[J]. Carbohydrate Polymers, 2018, 184:214-220.
[23] PANG Y, QIN A, LIN X, et al. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo[J]. Oncotarget, 2017, 8(22): 35583-35591.
[24] WANG J, WANG L, YU H, et al. Recent progress on synthesis, property and applica-tion of modified chitosan: An overview[J]. International Journal of Biological Macro-molecules, 2016, 88:333-344.
[25] PRAVEEN E, PETER I J, KUMAR A M, et al. Performance of ZnO/ZnS nanocomposite based dye-sensitized solar cell with chitosan-polymer electrolyte[J]. Materials Today: Proceedings, 2021, 35:27-30.
[26] KRAVANJA G, PRIMOZIC M, KNEZ Z, et al. Chitosan-based (nano)materials for nov-el biomedical applications[J]. Molecules, 2019, 24(10):1960.
[27] D'AMATO R, POLIMADEI A, TERRANOVA G, et al. Humidity sensing by chitosan-coated fibre bragg gratings (FBG)[J]. Sensors, 2021, 21(10):3348.
[28] YOUNES I, RINAUDO M. Chitin and chitosan preparation from marine sources. Struc-ture, properties and applications[J]. Marine Drugs, 2015, 13(3):1133-1174.
[29] MUZZARELLI R A A, BOUDRANT J, MEYER D, et al. Current views on fungal chi-tin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bi-centennial[J]. Carbohydrate Polymers, 2012, 87(2):995-1012.
[30] JIN X, YANG J, WANG Y, et al. Preparation and biomedical applications of alginate-chitosan microspheres[J]. Journal of International Stomatology, 2018, 45(4): 414-419.
[31] BASTIAENS L, SOETEMANS L, D'HONDT E, et al. Sources of chitin and chitosan and their isolation[M]. John Wiley & Sons, Ltd, 2019:2-12.
[32] LIU Q, XIE W, JIA Z, et al. Research progress of chitosan nanofiber membrane prepar-ing by electrospinning[J]. New Chemical Materials, 2021, 49(5):214-6,21.
[33] ANITHA A, SOWMYA S, KUMAR P T S, et al. Chitin and chitosan in selected bio-medical applications[J]. Progress in Polymer Science, 2014, 39(9):1644-1667.
[34] FAN M, HU Q, XIE J. Preparation and structure of chitosan swellable in alkali solution by ultrasonic treatment[J]. Applied Mechanics and Materials, 2011, 55-57:456-460.
[35] KIM H-R, JANG J-W, PARK J-W. Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent[J]. Journal of Hazardous Materials, 2016, 317:608-616.
[36] LINFANG A I, GUANGHUI W. Progress with respect to modification and application of chitosan[J]. China Surfactant Detergent and Cosmetics, 2011, 41(4):289-293.
[37] WANG X, DONG A, LIN Q. Progress in chitosan alkylation[J]. Chemical World, 2010, (6):370-374.
[38] YI H E, TI H A A H M, YIN B A Y B L. Preparation of amphiphilic carboxy methyl chitosan [J]. Journal of Shenyang Agricultural University, 2009, 40(2):251-253.
[39] KERCH G, KORKHOV V. Effect of storage time and temperature on structure, me-chanical and barrier properties of chitosan-based films[J]. European Food Research and Technology, 2011, 232(1):17-22.
[40] WANG Y, XIE J, XUE B, et al. Research progresses of chitosan food packaging film[J]. New Chemical Materials, 2015, 43(9):7-9.
[41] VAN DEN BROEK L A, KNOOP R J, KAPPEN F H, et al. Chitosan films and blends for packaging material[J]. Carbohydrate Polymers, 2015, 116:237-242.
[42] WANG H, MA X, HAO Y. Electronic devices for Human-machine interfaces[J]. Ad-vanced Materials Interfaces, 2017, 4(4): 16007-16009.
[43] ZHU Y, XUAN H, REN J, et al. Humidity responsive self-healing based on intermo-lecular hydrogen bonding and metal-ligand coordination[J]. RSC Advances, 2016, 6(92):89757-89763.
[44] WANG D-P, ZHAO Z-H, LI C-H. Universal self-healing poly(dimethylsiloxane) poly-mer crosslinked predominantly by physical entanglements[J]. ACS Applied Materials and Interfaces, 2021, 13(26): 31129-31139.
[45] YAN K, XU F, WANG C, et al. A multifunctional metal-biopolymer coordinated dou-ble network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties[J]. Biomaterials Science, 2020, 8(11): 31932-31901.
[46] CHEN Y, LIU T, WANG G, et al. Highly swelling, tough intelligent self-healing hydro-gel with body temperature-response[J]. European Polymer Journal, 2020, 140: 110047.
[47] DING F, SHI X, WU S, et al. Flexible polysaccharide hydrogel with pH-regulated recov-ery of self-Healing and mechanical properties[J]. Macromolecular Materials and Engi-neering, 2017, 302(11):17002-17021.
[48] YING H, ZHANG Y, CHENG J. Dynamic urea bond for the design of reversible and self-healing polymers[J]. Nature Communications, 2014, 5(1):3218.
[49] NADGORNY M, COLLINS J, XIAO Z, et al. 3D-printing of dynamic self-healing cryo-gels with tuneable properties[J]. Polymer Chemistry, 2018, 9(13):1684-1692.
[50] GHOSH B, CHELLAPPAN K V, URBAN M W. Self-healing inside a scratch of ox-etane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks[J]. Journal of Mate-rials Chemistry, 2011, 21(38):14473-14486.
[51] CAO J, LU C, ZHUANG J, et al. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions[J]. Angewandte Chemie-International Edition, 2017, 56(30):8795-8800.
[52] PENG Z-X, WANG L, DU L, et al. Adjustment of the antibacterial activity and bio-compatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium[J]. Carbohydrate Polymers, 2010, 81(2): 275-283.
[53] SONG F, KONG Y, SHAO C, et al. Chitosan-based multifunctional flexible hemostatic bio-hydrogel[J]. Acta Biomaterialia, 2021, 136:170-183.
[54] OHTA Y, KONDO Y, KAWADA K, et al. Synthesis and antibacterial activity of qua-ternary ammonium salt-type antibacterial agents with a phosphate group[J]. Journal of Oleo Science, 2008, 57(8):445-452.
[55] CAZON P, VAZQUEZ M. Mechanical and barrier properties of chitosan combined with other components as food packaging film[J]. Environmental Chemistry Letters, 2020, 18(2):257-267.
[56] Reis A D, Yoshida C P, Vera S, et al. Study of diffusion and water vapor permeability in chitosan films and chitosan emulsified films[J]. Defect & Diffusion Forum, 2012, 326-328:170-175.
[57] ZHANG Y, XIONG Z, GE H, et al. Core-shell bioderived flame retardants based on chi-tosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of pol-ylactic acid[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(16): 6402-6412.
[58] CHEN M, RUNGE T, WANG L, et al. Hydrogen bonding impact on chitosan plasticiza-tion[J]. Carbohydrate Polymers, 2018, 200:115-121.
[59] CHEN G, HUANG J, GU J, et al. Highly tough supramolecular double network hydro-gel electrolytes for an artificial flexible and low-temperature tolerant sensor[J]. Journal of Materials Chemistry A, 2020, 8(14):6776-6784.
[60] LIU Y, YU F. Preparation and characterization of genipin-crosslinked chi-tosan/poly(ethylene glycol) composites films[J]. Asian Journal of Chemistry, 2012, 24(5):2020-2024.
[61] QIN C, DU Y, ZONG L, et al. Effect of hemicellulase on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability, 2003, 80(3):435-441.
[62] LI F, LIU W G, DE YAO K. Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour[J]. Bi-omaterials, 2002, 23(2):343-347.
[63] CHEN Y, LI J, LI Q, et al. Enhanced water-solubility, antibacterial activity and bio-compatibility upon introducing sulfobetaine and quaternary ammonium to chitosan [J]. Carbohydrate Polymers, 2016, 143:246-253.
[64] QIN C, XIAO Q, LI H, et al. Calorimetric studies of the action of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride on the growth of microorganisms[J]. In-ternational Journal of Biological Macromolecules, 2004, 34(1):121-126.
[65] SANKRI A, ARHALIASS A, DEZ I, et al. Thermoplastic starch plasticized by an ionic liquid[J]. Carbohydrate Polymers, 2010, 82(2):256-263.
[66] DOMJAN A, BAJDIK J, PINTYE-HODI K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy[J]. Macro-molecules, 2009, 42(13):4667-4673.
[67] KAMMOUN M, HADDAR M, KALLEL T K, et al. Biological properties and biodegra-dation studies of chitosan biofilms plasticized with PEG and glycerol[J]. International Journal of Biological Macromolecules, 2013, 62:433-438.
[68] OTVAGINA K V, MOCHALOVA A E, SAZANOVA T S, et al. Preparation and charac-terization of facilitated transport membranes composed of chitosan-styrene and chi-tosan-acrylonitrile copolymers modified by methylimidazolium based ionic liquids for CO2 separation from CH4 and N2[J]. Membranes, 2016, 6(2):31.
[69] PRASAD B, MANDAL B. Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 sepa-ration[J]. Journal of Industrial & Engineering Chemistry, 2018, 66: 419-429.
[70] SILVA S S, MANO J F, REIS R L. Ionic liquids in the processing and chemical modifi-cation of chitin and chitosan for biomedical applications[J]. Green Chemistry, 2017, 19(5):1208-1220.
[71] CUI L, GAO S, SONG X, et al. Preparation and characterization of chitosan mem-branes[J]. RSC Advances, 2018, 8(50): 433-439.
[72] FU R, JI X, REN Y, et al. Antibacterial blend films of cellulose and chitosan prepared from binary ionic liquid system[J]. Fibers and Polymers, 2017, 18(5):852-858.
[73] PAIVA A, CRAVEIRO R, AROSO I, et al. Natural deep eutectic solvents - solvents for the 21st century[J]. ACS Sustainable Chemistry and Engineering, 2014, 2(5):1063-1071.
[74] GALVIS-SANCHEZ A C, SOUSA A M M, HILLIOU L, et al. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development[J]. Green Chemistry, 2016, 18(6):1571-1580.
[75] SOKOLOVA M P, SMIRNOV M A, SAMAROV A A, et al. Plasticizing of chitosan films with deep eutectic mixture of malonic acid and choline chloride[J]. Carbohydrate Polymers, 2018, 197:548-557.
[76] TAN W, DONG F, ZHANG J, et al. Physical and antioxidant properties of edible chi-tosan ascorbate films[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9):2530-2539.
[77] HILLBERG A L, TABRIZIAN M. Biorecognition through layer-by-layer polyelectrolyte assembly: In-situ hybridization on living cells[J]. Biomacromolecules, 2006, 7(10):2742-2750.
[78] MENG Q, HEUZEY M-C, CARREAU P J. Hierarchical structure and physicochemical properties of plasticized chitosan[J]. Biomacromolecules, 2014, 15(4): 1216-1224.
[79] WU W, HAICK H. Materials and wearable devices for autonomous monitoring of phys-iological markers[J]. Advanced Materials, 2018, 30(41):1705024.
[80] GONG L, WANG J, XIANG L, et al. Characterizing foulants on slotted liner and prob-ing the surface interaction mechanisms in organic media with implication for an anti-fouling strategy in oil production[J]. Fuel, 2021, 290:120008.
[81] Oxford Instruments Asylum Research, Inc. Products of OIAR[DB/OL].
[2012-05]. https://afm.oxinst.com/products/mfp-3d-afm-systems/.
[82] CAO N, FU Y, HE J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid[J]. Food Hydrocolloids, 2007, 21(4):575-584.
[83] AHMAD T, GURIA C, MANDAL A. Optimal synthesis and operation of low-cost poly-vinyl chloride/bentonite ultrafiltration membranes for the purification of oilfield pro-duced water[J]. Journal of Membrane Science, 2018, 564:859-877.
[84] ZHU B, MA D, WANG J, et al. Structure and properties of semi-interpenetrating net-work hydrogel based on starch[J]. Carbohydrate Polymers, 2015, 133:448-455.
[85] WANG X, ZHOU J, ZHU Y, et al. Assembly of silver nanowires and PEDOT:PSS with hydrocellulose toward highly flexible, transparent and conductivity-stable conductors[J]. Chemical Engineering Journal, 2020, 392:123644.
[86] ZHAO D, ZHANG Q, CHEN W, et al. Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(15):13213-13222.
[87] KIATKAMJORNWONG S, PUTTHIMAI P, NOGUCHI H. Comparison of textile print quality between inkjet and screen printings[J]. Surface Coatings International Part B Coatings Transactions, 2005, 88(1):25-34.
[88] CHENG H, HUANG Y, CHENG Q, et al. Self-healing graphene oxide based functional architectures triggered by moisture[J]. Advanced Functional Materials, 2017, 27(42):1703096.
[89] WU L, LI L, QU M, et al. Mussel-inspired self-adhesive, antidrying, and antifreezing poly(acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing ap-plication[J]. ACS Applied Polymer Materials, 2020, 2(8):3094-3106.
[90] XU D, SHEN H-J, XIE J-J, et al. Screen printing, modification via post-treatment and application in dye-sensitized solar cells of PEDOT:PSS films[J]. Acta Polymerica Sinica, 2019, 50(1):36-43.
[91] LI J, XIE B, XIA K, et al. Facile synthesis and characterization of cross-linked chitosan quaternary ammonium salt membrane for antibacterial coating of piezoelectric sen-sors[J]. International Journal of Biological Macromolecules, 2018, 120:745-752.
[92] LI C, XU H, CHEN S-C. Design of a precision multi-layer roll-to-roll printing system [J]. Precision Engineering, 2020, 66: 564-576.
[93] OU Y, TIAN M. Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications[J]. Journal of Materials Chemistry B, 2021, 9(38): 7955-7971.
[94] XU C, ZHAN W, TANG X, et al. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages[J]. Polymer Testing, 2018, 66: 155-163.
[95] PARK J, KIM M, LEE Y, et al. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli[J]. Science advances, 2015, 1(9):e1500661.
[96] LI R Z, HU A, ZHANG T, et al. Direct writing on paper of foldable capacitive touch pads with silver nanowire inks[J]. ACS Applied Materials & Interfaces, 2014, 6(23):21721-21729.
修改评论