题名 | 基于深度迁移学习的电梯故障诊断研究 |
姓名 | |
姓名拼音 | GUO Yujia
|
学号 | 12032227
|
学位类型 | 硕士
|
学位专业 | 0856 材料与化工
|
学科门类/专业学位类别 | 0856 材料与化工
|
导师 | |
导师单位 | 电子与电气工程系
|
论文答辩日期 | 2022-05-09
|
论文提交日期 | 2022-06-13
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 近年来,随着社会的不断进步以及城市现代化的飞速发展,高层建筑不断增加,电梯已成为了城市中不可缺少的垂直交通工具。电梯的安全维护工作也随之变得至关重要。目前,电梯的维护管理模式主要是人工定期维保,但由于电梯数量非常巨大,传统的人工维保不仅会耗费大量的运维成本,而且容易错过电梯故障维修的最佳时间节点,无法及时排除安全隐患。针对这些问题,本文提出了一种基于ALSTM-SEFCN神经网络的深度迁移学习电梯故障诊断方法,旨在实现电梯信号的实时监测及故障诊断,提升电梯运行的安全可靠性。 本文提出的电梯故障诊断方法不需要复杂的数据预处理操作和过多的专家知识,通过非侵入式传感器采集电梯的多维电流信号作为数据集,借助ALSTM-SEFCN神经网络提取信号样本的时序故障特征,以有监督学习的方式实现了电梯的故障检测与识别。本文以采集的真实电梯数据作为实验数据集,将本文提出的方法与其他网络模型进行了比较,证实了该电梯故障诊断方法的有效性。为了观察各层网络的特征提取能力,理解模型的分类过程,采用t-SNE方法对模型的各层输出进行了可视化分析。 针对传统机器学习方法样本需求量大,而实际的电梯故障诊断问题中异常训练样本缺乏导致模型性能降低的问题,本文将深度迁移学习方法引入到模型中,建立了基于深度迁移学习的电梯故障诊断方法。本文收集了不同规格和模式的电梯数据作为源数据集和目标数据集,针对不同的迁移学习场景,比较了不同迁移策略下模型的故障诊断性能,为实际场景下的迁移学习策略选择提供了参考。 为了进一步验证本文提出的基于深度迁移学习的故障诊断方法的实际价值,利用该方法设计了电梯故障双层诊断模型,结合滑动窗口的数据实时切分方法,搭建了电梯实时状态监测故障诊断模型系统并进行了模型部署上线测试,该系统实现了电梯实时状态信息显示、故障诊断以及故障信息统计等功能。 |
其他摘要 | In recent years, with the continuous progress of society and the rapid development of urban modernization, urban population density is increasing day by day, which leads to the rapid increase of high-rise buildings and elevators. Nowadays, elevators have become an indispensable vertical transportation in cities. Therefore, the safety maintenance of elevators has become very important. At present, manual maintenance is the mainly maintenance and management mode of elevators. However, due to the huge number of elevators, traditional manual maintenance will not only consume a lot of maintenance costs, but also easily miss the best time node for elevator fault maintenance, resulting in failure to eliminate potential safety hazards in time. In response to these problems, this paper proposes a deep transfer learning elevator fault diagnosis method based on ALSTM-SEFCN neural network, which aims to realize real-time monitoring and fault diagnosis of elevator signals and improve the safety and reliability of elevator operation. The elevator fault diagnosis method proposed in this paper does not require complex data preprocessing operations and excessive expert knowledge. The multi-dimensional current signal of the elevator is collected as a data set through non-invasive sensors, and the time series fault characteristics of the signal samples are extracted with the help of ALSTM-SEFCN neural network, to realize the fault detection and identification of elevators in a supervised learning manner. In this paper, we collected real elevator data as the experimental data set. The method proposed in this paper is compared with other network models, and the results confirm the effectiveness of the elevator fault diagnosis method. In order to observe the feature extraction ability of each layer of the network and understand the classification process of the model, the t-SNE method is used to visually analyze the output of each layer of the model. In view of the problem that traditional machine learning methods require a large number of samples, and the lack of abnormal training samples in the actual elevator fault diagnosis problem can lead to model performance drops, this paper introduces the deep transfer learning method into the model, and establishes an elevator fault diagnosis method based on deep transfer learning. This paper collects elevator data of different specifications and modes as the source data sets and target data sets. For different transfer learning scenarios, the fault diagnosis performance of the models under different transfer strategies is compared, which provides a reference for the selection of transfer learning strategies in practical scenarios. In order to further verify the practical value of the fault diagnosis method based on deep transfer learning proposed in this paper, using this method combine with the real-time data segmentation method of sliding window to design a double-layer real-time status monitoring and fault diagnosis system for elevators. The system has carried out the model deployment and online test, and realized the functions of elevator real-time status information display, fault diagnosis and fault information statistics. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2020
|
学位授予年份 | 2022-06
|
参考文献列表 | [1] 2019-2025 年中国电梯行业市场及竞争发展趋势研究报告[R].深圳市盛世华研企业管理有限公司,2019. |
所在学位评定分委会 | 电子与电气工程系
|
国内图书分类号 | TP181
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335729 |
专题 | 工学院_电子与电气工程系 |
推荐引用方式 GB/T 7714 |
郭宇嘉. 基于深度迁移学习的电梯故障诊断研究[D]. 深圳. 南方科技大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12032227-郭宇嘉-电子与电气工程(4239KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[郭宇嘉]的文章 |
百度学术 |
百度学术中相似的文章 |
[郭宇嘉]的文章 |
必应学术 |
必应学术中相似的文章 |
[郭宇嘉]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论