中文版 | English
题名

金属酞菁应用于两电子氧还原电催化的研究

其他题名
METAL PHTHALOCYANINES FOR THE TWO-ELECTRON OXYGEN REDUCTION ELECTROCATALYSIS
姓名
姓名拼音
YUAN Yubo
学号
12032770
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
梁永晔
导师单位
材料科学与工程系
外机构导师
李子刚
外机构导师单位
深圳湾实验室
论文答辩日期
2022-05-05
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

两电子氧还原反应(2e- ORR)可以提供一种分散式和清洁型的过氧化氢(H2O2)生产途径。电催化剂对这一重要反应的选择性与活性起到了至关重要的作用。发展并优化性能描述符有助于指导电催化剂的理性设计。然而,目前对性能描述符的认识仍然不足,高性能非贵金属电催化剂的发展也面临挑战。本文结合密度泛函理论计算和电化学测试,研究了一系列金属酞菁(MPcs,M = Co、Ni、Zn、Cu、Mn)在2e- ORR中的催化性能。通过对反应自由能图的能量变化分析,提出*O*OOH中间体的吸附能之差(ΔG*OG*OOH)和*H2O2中间体的吸附能(ΔG*H2O2可以作为选择性描述符,并在实验中得到验证。ΔG*OG*OOHΔG*H2O2的值越正,则分别说明O-O键的断裂或H2O2的再吸附越难,越有利于选择性的提高MPc分子锚定在碳纳米管上形成的单分子分散电催化剂(MDE)在旋转电极上具有比聚集分子更好的催化性能,其实验结果与理论计算也更吻合。其中,发现了CoPc MDE有更好的2e-活性,而ZnPc MDE有更好的选择性。增加催化层的疏水性可以提升ΔG*H2O2从而使选择性提高。在气体扩散电极中,ZnPc MDECoPc MDE均在较高的H2O2生产速率下具有低过电位、高选择性和良好的稳定性。本研究不仅发展了高效的MPc2e- ORR催化剂,还揭示了选择性描述符,为非贵金属电催化剂的理性设计提供了重要参考。

其他摘要

The  oxygen reduction reaction (  ORR) provides an appealing pathway to produce hydrogen peroxide (H2O2) in a decentralized and cleaner approach. Electrocatalysts play an important role in determining the selectivity and activity of this important reaction. Developing and optimizing performance descriptors is helpful to guide the rational design of electrocatalysts. However, the current understanding of performance descriptors is insufficient, and it is still challenging to develop high-performance noble-metal-free electrocatalysts. In this thesis, the catalytic performances of a series of metal phthalocyanines (MPcs, M = Co, Ni, Zn, Cu, Mn) for  ORR are studied by combining density functional theory calculations with electrochemical tests. By analyzing the energy changes of free energy profiles, the difference in the adsorption energy of *O and *OOH intermediates (ΔG*OG*OOH) and the adsorption energy of *H2O2 intermediate (ΔG*H2O2) are proposed to be selectivity descriptors, which are confirmed by experiments. The value of  ΔG*OG*OOH or ΔG*H2O2 becomes more positive, the O-O bond breaking or H2O2 adsorption is more difficult respectively, leading to higher selectivity. Molecularly dispersed electrocatalysts (MDEs) with MPcs anchored on carbon nanotubes exhibit better performances than those of aggregated molecules when tested on rotating electrodes. The experimental data of MDEs also match the theoretical calculation result better. Among them, CoPc MDE shows higher  activity, while ZnPc MDE shows higher selectivity. Increasing the hydrophobicity of the catalytic layer can increase ΔG*H2O2 , leading to the improvement of selectivity. In the gas diffusion electrode measurements, both ZnPc MDE and CoPc MDE exhibit low overpotential, high selectivity, and good stability at high H2O2 production rates. This study not only develops efficient MPc-based  ORR catalysts, but also reveals selectivity descriptors, and provides guidelines for rational design of noble-metal-free electrocatalysts.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] JIANG Y Y, NI P J, CHEN C X, et al. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry[J]. Advanced Energy Materials, 2018, 8(31):25.
[2] XING M Y, XU W J, DONG C C, et al. Metal Sulfides as Excellent Co-catalysts for H2O2 Decomposition in Advanced Oxidation Processes[J]. Chem, 2018, 4(6):1359-1372.
[3] HAGE R, LIENKE A. Applications of transition-metal catalysts to textile and wood-pulp bleaching[J]. Angewandte Chemie International Edition, 2006, 45(2):206-222.
[4] FUKUZUMI S, YAMADA Y, KARLIN K D. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell[C]. Electrochimica Acta, 2012:493-511.
[5] MYERS R L. The 100 most important chemical compounds[M]. London: Greenwood Press, 2007.
[6] PULIDINDI K, PANDEY H. Global Hydrogen Peroxide Market Size Worth Over $6.2 billion by 2026[EB/OL]. Global Market Insights, 2020(2020-05-12)
[2022-02-11]. https://www.gminsights.com/pressrelease/hydrogen-peroxide-market.
[7] WANG F, XIA C, DE VISSER S P, et al. How Does the Oxidation State of Palladium Surfaces Affect the Reactivity and Selectivity of Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen Gases? A Density Functional Study[J]. Journal of the American Chemical Society, 2019, 141(2):901-910.
[8] CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42):6962-6984.
[9] YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis[J]. Acs Catalysis, 2018, 8(5):4064-4081.
[10] FAN W, ZHANG B, WANG X, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction[J]. Energy & Environmental Science, 2020, 13(1):238-245.
[11] LI L, TANG C, ZHENG Y, et al. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon[J]. Advanced Energy Materials, 2020, 10(21):2000789.
[12] XIA C, KIM J Y, WANG H T. Recommended practice to report selectivity in electrochemical synthesis of H2O2[J]. Nature Catalysis, 2020, 3(8):605-607.
[13] SUN Y, HAN L, STRASSER P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production[J]. Chemical Society Reviews, 2020, 49(18):6605-6631.
[14] 付辉, 张彩凤. 双氧水生产工艺及市场分析[J]. 精细石油化工进展, 2019, 20(4):41-44.
[15] CHEN Z H, CHEN S C, SIAHROSTAMI S, et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2[J]. Reaction Chemistry & Engineering, 2017, 2(2):239-245.
[16] WANG N, MA S B, ZUO P J, et al. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction[J]. Advanced Science, 2021, 8(15):2100076.
[17] WANG G F, RAMESH N, HSU A, et al. Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine[J]. Molecular Simulation, 2008, 34(10-15):1051-1056.
[18] NøRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46):17886-17892.
[19] HAN G-F, LI F, ZOU W, et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J]. Nature Communications, 2020, 11(1):2209.
[20] JUNG E, SHIN H, LEE B-H, et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials, 2020, 19(4):436-442.
[21] GAO J J, YANG H B, HUANG X, et al. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst[J]. Chem, 2020, 6(3):658-674.
[22] TAN X, TAHINI H A, SMITH S C. Unveiling the role of carbon oxidation in irreversible degradation of atomically-dispersed FeN4 moieties for proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(13):8721-8729.
[23] GUO X, LIN S, GU J, et al. Simultaneously Achieving High Activity and Selectivity toward Two-Electron O2 Electroreduction: The Power of Single-Atom Catalysts[J]. ACS Catalysis, 2019, 9(12):11042-11054.
[24] LIU C, LI H, LIU F, et al. Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis[J]. Journal of the American Chemical Society, 2020, 142(52):21861-21871.
[25] LIN C-Y, ZHANG L, ZHAO Z, et al. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production[J]. Advanced Materials, 2017, 29(17):1606635.
[26] LI B-Q, ZHAO C-X, LIU J-N, et al. Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-Nx-C Sites and Oxygen Functional Groups in Noble-Metal-Free Electrocatalysts[J]. Advanced materials, 2019, 31(35): 1808173.
[27] ZHAO X, WANG Y, DA Y, et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes[J]. National Science Review, 2020, 7(8):1360-1366.
[28] DONG K, LIANG J, WANG Y, et al. Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2021, 60(19):10583-10587.
[29] SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials, 2013, 12(12):1137-1143.
[30] JIRKOVSKý J S, PANAS I, AHLBERG E, et al. Single Atom Hot-Spots at Au–Pd Nanoalloys for Electrocatalytic H2O2 Production[J]. Journal of the American Chemical Society, 2011, 133(48):19432-19441.
[31] VERDAGUER-CASADEVALL A, DEIANA D, KARAMAD M, et al. Trends in the Electrochemical Synthesis of H2O2: Enhancing Activity and Selectivity by Electrocatalytic Site Engineering[J]. Nano Letters, 2014, 14(3):1603-1608.
[32] SHEN R G, CHEN W X, PENG Q, et al. High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution[J]. Chem, 2019, 5(8):2099-2110.
[33] CHANG Q, ZHANG P, MOSTAGHIMI A H B, et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon[J]. Nature Communications, 2020, 11(1):2178.
[34] ZHOU Y, CHEN G, ZHANG J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide[J]. Journal of Materials Chemistry A, 2020, 8(40):20849-20869.
[35] LIU Y, QUAN X, FAN X, et al. High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon[J]. Angewandte Chemie International Edition, 2015, 54(23):6837-6841.
[36] KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4):282-290.
[37] FELLINGER T-P, HASCHé F, STRASSER P, et al. Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide[J]. Journal of the American Chemical Society, 2012, 134(9):4072-4075.
[38] LU Z, CHEN G, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2):156-162.
[39] CHEN S, CHEN Z, SIAHROSTAMI S, et al. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide[J]. Journal of the American Chemical Society, 2018, 140(25):7851-7859.
[40] WU K H, WANG D, LU X Y, et al. Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants[J]. Chem, 2020, 6(6):1443-1458.
[41] WANG Y, YI M, WANG K, et al. Enhanced electrocatalytic activity for H2O2 production by the oxygen reduction reaction: Rational control of the structure and composition of multi-walled carbon nanotubes[J]. Chinese Journal of Catalysis, 2019, 40(4):523-533.
[42] ZHANG J, ZHANG H, CHENG M-J, et al. Tailoring the Electrochemical Production of H2O2: Strategies for the Rational Design of High-Performance Electrocatalysts[J]. Small, 2020, 16(15):1902845.
[43] XIA Y, ZHAO X, XIA C, et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates[J]. Nature Communications, 2021, 12(1):4225.
[44] XIA W, MAHMOOD A, LIANG Z B, et al. Earth-Abundant Nanomaterials for Oxygen Reduction[J]. Angewandte Chemie International Edition, 2016, 55(8):2650-2676.
[45] SUN Y Y, SILVIOLI L, SAHRAIE N R, et al. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts[J]. Journal of the American Chemical Society, 2019, 141(31):12372-12381.
[46] ZHANG Q, TAN X, BEDFORD N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications, 2020, 11(1):4181.
[47] ZHAO Q L, WANG Y, LAI W H, et al. Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater[J]. Energy & Environmental Science, 2021, 14(10):5444-5456.
[48] JUNG E, SHIN H, HOOCH ANTINK W, et al. Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design[J]. ACS Energy Letters, 2020, 5(6):1881-1892.
[49] TANG C, CHEN L, LI H, et al. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres[J]. Journal of the American Chemical Society, 2021, 143(20):7819-7827.
[50] GONG H, WEI Z, GONG Z, et al. Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2 Production[J]. Advanced Functional Materials, 2022, 32(5):2106886.
[51] JIANG K, BACK S, AKEY A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10:3997.
[52] WANG Y L, SHI R, SHANG L, et al. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Phase Flow Cell[J]. Angewandte Chemie International Edition, 2020, 59(31):13057-13062.
[53] TANG C, JIAO Y, SHI B, et al. Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23):9171-9176.
[54] JIA Y, XUE Z, YANG J, et al. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction[J]. Angewandte Chemie International Edition, 2022, 61(2):e202110838.
[55] ZHANG F, ZHU Y, TANG C, et al. High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N1O2 Coordination[J]. Advanced Functional Materials, 2021, 2110224.
[56] COLLMAN J P, DENISEVICH P, KONAI Y, et al. Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins[J]. Journal of the American Chemical Society, 1980, 102(19):6027-6036.
[57] SMITH P T, KIM Y, BENKE B P, et al. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide[J]. Angewandte Chemie International Edition, 2020, 59(12):4902-4907.
[58] LV B, LI X L, GUO K, et al. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers[J]. Angewandte Chemie International Edition, 2021, 60(23):12742-12746.
[59] GAO R, PAN L, LI Z, et al. Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H2O2 Production[J]. Advanced Functional Materials, 2020, 30(24):1910539.
[60] XIAO Y, HONG J, WANG X, et al. Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level[J]. Journal of the American Chemical Society, 2020, 142(30):13201-13209.
[61] WANG Y, WATERHOUSE G I N, SHANG L, et al. Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis[J]. Advanced Energy Materials, 2021, 11(15):2003323.
[62] WANG Y-H, PEGIS M L, MAYER J M, et al. Molecular Cobalt Catalysts for O2 Reduction: Low-Overpotential Production of H2O2 and Comparison with Iron-Based Catalysts[J]. Journal of the American Chemical Society, 2017, 139(46):16458-16461.
[63] MURAYAMA T, TAZAWA S, TAKENAKA S, et al. Catalytic neutral hydrogen peroxide synthesis from O2 and H2 by PEMFC fuel[J]. Catalysis Today, 2011, 164(1):163-168.
[64] YANG S, YU Y, GAO X, et al. Recent advances in electrocatalysis with phthalocyanines[J]. Chemical Society Reviews, 2021, 50(23):12985-13011.
[65] ABBASPOUR A, NOROUZ-SARVESTANI F, MIRAHMADI E. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution[J]. Electrochimica Acta, 2012, 76:404-409.
[66] KUMAR Y, KIBENA-PõLDSEPP E, KOZLOVA J, et al. Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(35):41507-41516.
[67] WANG Y, ZHANG Z, ZHANG X, et al. Theory-Driven Design of Electrocatalysts for the Two-Electron Oxygen Reduction Reaction Based on Dispersed Metal Phthalocyanines[J]. CCS Chemistry, 2021, 4(1):228-236.
[68] CHEN K, LIU K, AN P, et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nature Communications, 2020, 11(1):4173.
[69] ZHANG X, WU Z S, ZHANG X, et al. Highly selective and active CO2 reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8(1):14675.
[70] JIANG Z, WANG Y, ZHANG X, et al. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes[J]. Nano Research, 2019, 12(9):2330-2334.
[71] WU Y, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784):639-642.
[72] WANG Y, JIANG Z, ZHANG X, et al. Metal Phthalocyanine-Derived Single-Atom Catalysts for Selective CO2 Electroreduction under High Current Densities[J]. Acs Applied Materials & Interfaces, 2020, 12(30):33795-33802.
[73] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9):684-692.
[74] REN X, LIU S, LI H, et al. Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst[J]. Science China Chemistry, 2020, 63(12):1727-1733.
[75] ZHANG Z, XIAO J P, CHEN X J, et al. Reaction Mechanisms of Well-Defined Metal-N-4 Sites in Electrocatalytic CO2 Reduction[J]. Angewandte Chemie International Edition, 2018, 57(50):16339-16342.
[76] JASINSKI R. A New Fuel Cell Cathode Catalyst[J]. Nature, 1964, 201(4925):1212-1213.
[77] SUN S R, JIANG N, XIA D G. Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines[J]. Journal of Physical Chemistry C, 2011, 115(19):9511-9517.
[78] ZHANG Z, YANG S, DOU M, et al. Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT[J]. RSC Advances, 2016, 6(71):67049-67056.
[79] BYERS J C, GUELL A G, UNWIN P R. Nanoscale Electrocatalysis: Visualizing Oxygen Reduction at Pristine, Kinked, and Oxidized Sites on Individual Carbon Nanotubes[J]. Journal of the American Chemical Society, 2014, 136(32):11252-11255.
[80] SA Y J, KIM J H, JOO S H. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production[J]. Angewandte Chemie International Edition, 2019, 58(4):1100-1105.
[81] ZHANG Q, ZHOU M, REN G, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications, 2020, 11(1):1731.
[82] BARROS W R P, REIS R M, ROCHA R S, et al. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine[J]. Electrochimica Acta, 2013, 104:12-18.
[83] CHEN Y, HUA X, CHEN S. Theoretical study of stability of metal-N4 macrocyclic compounds in acidic media[J]. Chinese Journal of Catalysis, 2016, 37(7):1166-1171.
[84] LI H, WEN P, ITANZE D S, et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways[J]. Nature Communications, 2020, 11(1):3928.
[85] XIA C, XIA Y, ZHU P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462):226.
[86] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
[87] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[88] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. The Journal of Chemical Physics, 1996, 105(22):9982-9985.
[89] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775.
[90] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15):154104.
[91] WANG V, XU N, LIU J, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 2021, 267:108033.
[92] MATHEW K, SUNDARARAMAN R, LETCHWORTH-WEAVER K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. Journal of Chemical Physics, 2014, 140(8):084106.
[93] MATHEW K, KOLLURU V S C, MULA S, et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. Journal of Chemical Physics, 2019, 151(23):8.
[94] TAKEYASU K, FURUKAWA M, SHIMOYAMA Y, et al. Role of Pyridinic Nitrogen in the Mechanism of the Oxygen Reduction Reaction on Carbon Electrocatalysts[J]. Angewandte Chemie International Edition, 2021, 60(10):5121-5124.
[95] NOFFKE B W, LI Q, RAGHAVACHARI K, et al. A Model for the pH-Dependent Selectivity of the Oxygen Reduction Reaction Electrocatalyzed by N-Doped Graphitic Carbon[J]. Journal of the American Chemical Society, 2016, 138(42):13923-13929.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB321
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335732
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
袁誉博. 金属酞菁应用于两电子氧还原电催化的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032770-袁誉博-材料科学与工程(4422KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[袁誉博]的文章
百度学术
百度学术中相似的文章
[袁誉博]的文章
必应学术
必应学术中相似的文章
[袁誉博]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。