[1] JIANG Y Y, NI P J, CHEN C X, et al. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry[J]. Advanced Energy Materials, 2018, 8(31):25.
[2] XING M Y, XU W J, DONG C C, et al. Metal Sulfides as Excellent Co-catalysts for H2O2 Decomposition in Advanced Oxidation Processes[J]. Chem, 2018, 4(6):1359-1372.
[3] HAGE R, LIENKE A. Applications of transition-metal catalysts to textile and wood-pulp bleaching[J]. Angewandte Chemie International Edition, 2006, 45(2):206-222.
[4] FUKUZUMI S, YAMADA Y, KARLIN K D. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell[C]. Electrochimica Acta, 2012:493-511.
[5] MYERS R L. The 100 most important chemical compounds[M]. London: Greenwood Press, 2007.
[6] PULIDINDI K, PANDEY H. Global Hydrogen Peroxide Market Size Worth Over $6.2 billion by 2026[EB/OL]. Global Market Insights, 2020(2020-05-12)
[2022-02-11]. https://www.gminsights.com/pressrelease/hydrogen-peroxide-market.
[7] WANG F, XIA C, DE VISSER S P, et al. How Does the Oxidation State of Palladium Surfaces Affect the Reactivity and Selectivity of Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen Gases? A Density Functional Study[J]. Journal of the American Chemical Society, 2019, 141(2):901-910.
[8] CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42):6962-6984.
[9] YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis[J]. Acs Catalysis, 2018, 8(5):4064-4081.
[10] FAN W, ZHANG B, WANG X, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction[J]. Energy & Environmental Science, 2020, 13(1):238-245.
[11] LI L, TANG C, ZHENG Y, et al. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon[J]. Advanced Energy Materials, 2020, 10(21):2000789.
[12] XIA C, KIM J Y, WANG H T. Recommended practice to report selectivity in electrochemical synthesis of H2O2[J]. Nature Catalysis, 2020, 3(8):605-607.
[13] SUN Y, HAN L, STRASSER P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production[J]. Chemical Society Reviews, 2020, 49(18):6605-6631.
[14] 付辉, 张彩凤. 双氧水生产工艺及市场分析[J]. 精细石油化工进展, 2019, 20(4):41-44.
[15] CHEN Z H, CHEN S C, SIAHROSTAMI S, et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2[J]. Reaction Chemistry & Engineering, 2017, 2(2):239-245.
[16] WANG N, MA S B, ZUO P J, et al. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction[J]. Advanced Science, 2021, 8(15):2100076.
[17] WANG G F, RAMESH N, HSU A, et al. Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine[J]. Molecular Simulation, 2008, 34(10-15):1051-1056.
[18] NøRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46):17886-17892.
[19] HAN G-F, LI F, ZOU W, et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J]. Nature Communications, 2020, 11(1):2209.
[20] JUNG E, SHIN H, LEE B-H, et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials, 2020, 19(4):436-442.
[21] GAO J J, YANG H B, HUANG X, et al. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst[J]. Chem, 2020, 6(3):658-674.
[22] TAN X, TAHINI H A, SMITH S C. Unveiling the role of carbon oxidation in irreversible degradation of atomically-dispersed FeN4 moieties for proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(13):8721-8729.
[23] GUO X, LIN S, GU J, et al. Simultaneously Achieving High Activity and Selectivity toward Two-Electron O2 Electroreduction: The Power of Single-Atom Catalysts[J]. ACS Catalysis, 2019, 9(12):11042-11054.
[24] LIU C, LI H, LIU F, et al. Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis[J]. Journal of the American Chemical Society, 2020, 142(52):21861-21871.
[25] LIN C-Y, ZHANG L, ZHAO Z, et al. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production[J]. Advanced Materials, 2017, 29(17):1606635.
[26] LI B-Q, ZHAO C-X, LIU J-N, et al. Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-Nx-C Sites and Oxygen Functional Groups in Noble-Metal-Free Electrocatalysts[J]. Advanced materials, 2019, 31(35): 1808173.
[27] ZHAO X, WANG Y, DA Y, et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes[J]. National Science Review, 2020, 7(8):1360-1366.
[28] DONG K, LIANG J, WANG Y, et al. Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2021, 60(19):10583-10587.
[29] SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials, 2013, 12(12):1137-1143.
[30] JIRKOVSKý J S, PANAS I, AHLBERG E, et al. Single Atom Hot-Spots at Au–Pd Nanoalloys for Electrocatalytic H2O2 Production[J]. Journal of the American Chemical Society, 2011, 133(48):19432-19441.
[31] VERDAGUER-CASADEVALL A, DEIANA D, KARAMAD M, et al. Trends in the Electrochemical Synthesis of H2O2: Enhancing Activity and Selectivity by Electrocatalytic Site Engineering[J]. Nano Letters, 2014, 14(3):1603-1608.
[32] SHEN R G, CHEN W X, PENG Q, et al. High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution[J]. Chem, 2019, 5(8):2099-2110.
[33] CHANG Q, ZHANG P, MOSTAGHIMI A H B, et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon[J]. Nature Communications, 2020, 11(1):2178.
[34] ZHOU Y, CHEN G, ZHANG J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide[J]. Journal of Materials Chemistry A, 2020, 8(40):20849-20869.
[35] LIU Y, QUAN X, FAN X, et al. High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon[J]. Angewandte Chemie International Edition, 2015, 54(23):6837-6841.
[36] KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4):282-290.
[37] FELLINGER T-P, HASCHé F, STRASSER P, et al. Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide[J]. Journal of the American Chemical Society, 2012, 134(9):4072-4075.
[38] LU Z, CHEN G, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2):156-162.
[39] CHEN S, CHEN Z, SIAHROSTAMI S, et al. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide[J]. Journal of the American Chemical Society, 2018, 140(25):7851-7859.
[40] WU K H, WANG D, LU X Y, et al. Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants[J]. Chem, 2020, 6(6):1443-1458.
[41] WANG Y, YI M, WANG K, et al. Enhanced electrocatalytic activity for H2O2 production by the oxygen reduction reaction: Rational control of the structure and composition of multi-walled carbon nanotubes[J]. Chinese Journal of Catalysis, 2019, 40(4):523-533.
[42] ZHANG J, ZHANG H, CHENG M-J, et al. Tailoring the Electrochemical Production of H2O2: Strategies for the Rational Design of High-Performance Electrocatalysts[J]. Small, 2020, 16(15):1902845.
[43] XIA Y, ZHAO X, XIA C, et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates[J]. Nature Communications, 2021, 12(1):4225.
[44] XIA W, MAHMOOD A, LIANG Z B, et al. Earth-Abundant Nanomaterials for Oxygen Reduction[J]. Angewandte Chemie International Edition, 2016, 55(8):2650-2676.
[45] SUN Y Y, SILVIOLI L, SAHRAIE N R, et al. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts[J]. Journal of the American Chemical Society, 2019, 141(31):12372-12381.
[46] ZHANG Q, TAN X, BEDFORD N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications, 2020, 11(1):4181.
[47] ZHAO Q L, WANG Y, LAI W H, et al. Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater[J]. Energy & Environmental Science, 2021, 14(10):5444-5456.
[48] JUNG E, SHIN H, HOOCH ANTINK W, et al. Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design[J]. ACS Energy Letters, 2020, 5(6):1881-1892.
[49] TANG C, CHEN L, LI H, et al. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres[J]. Journal of the American Chemical Society, 2021, 143(20):7819-7827.
[50] GONG H, WEI Z, GONG Z, et al. Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2 Production[J]. Advanced Functional Materials, 2022, 32(5):2106886.
[51] JIANG K, BACK S, AKEY A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10:3997.
[52] WANG Y L, SHI R, SHANG L, et al. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Phase Flow Cell[J]. Angewandte Chemie International Edition, 2020, 59(31):13057-13062.
[53] TANG C, JIAO Y, SHI B, et al. Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23):9171-9176.
[54] JIA Y, XUE Z, YANG J, et al. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction[J]. Angewandte Chemie International Edition, 2022, 61(2):e202110838.
[55] ZHANG F, ZHU Y, TANG C, et al. High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N1O2 Coordination[J]. Advanced Functional Materials, 2021, 2110224.
[56] COLLMAN J P, DENISEVICH P, KONAI Y, et al. Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins[J]. Journal of the American Chemical Society, 1980, 102(19):6027-6036.
[57] SMITH P T, KIM Y, BENKE B P, et al. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide[J]. Angewandte Chemie International Edition, 2020, 59(12):4902-4907.
[58] LV B, LI X L, GUO K, et al. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers[J]. Angewandte Chemie International Edition, 2021, 60(23):12742-12746.
[59] GAO R, PAN L, LI Z, et al. Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H2O2 Production[J]. Advanced Functional Materials, 2020, 30(24):1910539.
[60] XIAO Y, HONG J, WANG X, et al. Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level[J]. Journal of the American Chemical Society, 2020, 142(30):13201-13209.
[61] WANG Y, WATERHOUSE G I N, SHANG L, et al. Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis[J]. Advanced Energy Materials, 2021, 11(15):2003323.
[62] WANG Y-H, PEGIS M L, MAYER J M, et al. Molecular Cobalt Catalysts for O2 Reduction: Low-Overpotential Production of H2O2 and Comparison with Iron-Based Catalysts[J]. Journal of the American Chemical Society, 2017, 139(46):16458-16461.
[63] MURAYAMA T, TAZAWA S, TAKENAKA S, et al. Catalytic neutral hydrogen peroxide synthesis from O2 and H2 by PEMFC fuel[J]. Catalysis Today, 2011, 164(1):163-168.
[64] YANG S, YU Y, GAO X, et al. Recent advances in electrocatalysis with phthalocyanines[J]. Chemical Society Reviews, 2021, 50(23):12985-13011.
[65] ABBASPOUR A, NOROUZ-SARVESTANI F, MIRAHMADI E. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution[J]. Electrochimica Acta, 2012, 76:404-409.
[66] KUMAR Y, KIBENA-PõLDSEPP E, KOZLOVA J, et al. Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(35):41507-41516.
[67] WANG Y, ZHANG Z, ZHANG X, et al. Theory-Driven Design of Electrocatalysts for the Two-Electron Oxygen Reduction Reaction Based on Dispersed Metal Phthalocyanines[J]. CCS Chemistry, 2021, 4(1):228-236.
[68] CHEN K, LIU K, AN P, et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nature Communications, 2020, 11(1):4173.
[69] ZHANG X, WU Z S, ZHANG X, et al. Highly selective and active CO2 reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8(1):14675.
[70] JIANG Z, WANG Y, ZHANG X, et al. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes[J]. Nano Research, 2019, 12(9):2330-2334.
[71] WU Y, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784):639-642.
[72] WANG Y, JIANG Z, ZHANG X, et al. Metal Phthalocyanine-Derived Single-Atom Catalysts for Selective CO2 Electroreduction under High Current Densities[J]. Acs Applied Materials & Interfaces, 2020, 12(30):33795-33802.
[73] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9):684-692.
[74] REN X, LIU S, LI H, et al. Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst[J]. Science China Chemistry, 2020, 63(12):1727-1733.
[75] ZHANG Z, XIAO J P, CHEN X J, et al. Reaction Mechanisms of Well-Defined Metal-N-4 Sites in Electrocatalytic CO2 Reduction[J]. Angewandte Chemie International Edition, 2018, 57(50):16339-16342.
[76] JASINSKI R. A New Fuel Cell Cathode Catalyst[J]. Nature, 1964, 201(4925):1212-1213.
[77] SUN S R, JIANG N, XIA D G. Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines[J]. Journal of Physical Chemistry C, 2011, 115(19):9511-9517.
[78] ZHANG Z, YANG S, DOU M, et al. Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT[J]. RSC Advances, 2016, 6(71):67049-67056.
[79] BYERS J C, GUELL A G, UNWIN P R. Nanoscale Electrocatalysis: Visualizing Oxygen Reduction at Pristine, Kinked, and Oxidized Sites on Individual Carbon Nanotubes[J]. Journal of the American Chemical Society, 2014, 136(32):11252-11255.
[80] SA Y J, KIM J H, JOO S H. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production[J]. Angewandte Chemie International Edition, 2019, 58(4):1100-1105.
[81] ZHANG Q, ZHOU M, REN G, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications, 2020, 11(1):1731.
[82] BARROS W R P, REIS R M, ROCHA R S, et al. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine[J]. Electrochimica Acta, 2013, 104:12-18.
[83] CHEN Y, HUA X, CHEN S. Theoretical study of stability of metal-N4 macrocyclic compounds in acidic media[J]. Chinese Journal of Catalysis, 2016, 37(7):1166-1171.
[84] LI H, WEN P, ITANZE D S, et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways[J]. Nature Communications, 2020, 11(1):3928.
[85] XIA C, XIA Y, ZHU P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462):226.
[86] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
[87] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[88] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. The Journal of Chemical Physics, 1996, 105(22):9982-9985.
[89] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775.
[90] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15):154104.
[91] WANG V, XU N, LIU J, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 2021, 267:108033.
[92] MATHEW K, SUNDARARAMAN R, LETCHWORTH-WEAVER K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. Journal of Chemical Physics, 2014, 140(8):084106.
[93] MATHEW K, KOLLURU V S C, MULA S, et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. Journal of Chemical Physics, 2019, 151(23):8.
[94] TAKEYASU K, FURUKAWA M, SHIMOYAMA Y, et al. Role of Pyridinic Nitrogen in the Mechanism of the Oxygen Reduction Reaction on Carbon Electrocatalysts[J]. Angewandte Chemie International Edition, 2021, 60(10):5121-5124.
[95] NOFFKE B W, LI Q, RAGHAVACHARI K, et al. A Model for the pH-Dependent Selectivity of the Oxygen Reduction Reaction Electrocatalyzed by N-Doped Graphitic Carbon[J]. Journal of the American Chemical Society, 2016, 138(42):13923-13929.
修改评论