[1] EGGER G, LIANG GN, APARICIO A, et al. Epigenetics in human disease and prospects for epigenetic therapy[J]. Nature,2004,429(6990):457-463.
[2] HARVEY ZH, CHEN YW, JAROSZ DF. Protein-based inheritance: epigenetics beyond the chromosome[J]. Molecular Cell,2018,69(2):195-202.
[3] JELTSCH A. Beyond Watson and Crick DNA methylation and molecular enzymology of DNA methyltransferases[J]. Chembiochem,2002,3(4):274-293.
[4] MILAVETZ BI, BALAKRISHNAN L. Viral epigenetics[J]. Methods in Molecular Biology,2015,1238:569-596.
[5] SHELL SS, PRESTWICH EG, BAEK SH, et al. DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis[J]. PLoS Pathogens,2013,9(7):e1003419.
[6] BEAULAURIER J, SCHADT EE, FANG G. Deciphering bacterial epigenomes using modern sequencing technologies[J]. Nature Reviews Genetics,2019,20(3):157-172.
[7] JUAN C, PENA C, OLIVER A. Host and pathogen biomarkers for severe Pseudomonas aeruginosa infections[J]. The Journal of Infectious Diseases,2017,215(1):S44-S51.
[8] JAMAL M, AHMAD W, ANDLEEB S, et al. Bacterial biofilm and associated infections [J]. Journal of the Chinese Medical Association,2018,81(1):7-11.
[9] MAHMOUD AM, ALI MM. Methyl donor micronutrients that modify DNA methylation and cancer outcome[J]. Nutrients,2019,11(3),608.
[10] ADHIKARI S, CURTIS PD. DNA methyltransferases and epigenetic regulation in bacteria[J]. FEMS Microbiology Reviews,2016,40(5):575-591.
[11] SANCHEZ-ROMERO MA, CASADESUS J. The bacterial epigenome[J]. Nature Reviews Microbiology,2020,18(1):7-20.
[12] PINGOUD A, FUXREITER M, PINGOUD V, et al. Type II restriction endonucleases: structure and mechanism[J]. Cellular And Molecular Life Sciences,2005,62(6):685-707.
[13] VASU K, NAGARAJA V. Diverse functions of restriction-modification systems in addition to cellular defense[J]. Microbiology and Molecular Biology Reviews,2013,77(1):53-72.
[14] ROBERTS RJ, BELFORT M, BESTOR T, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes[J]. Nucleic Acids Research,2003,31(7):1805-1812.
[15] MURRAY NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle)[J]. Microbiology and Molecular Biology Reviews, 2000, 64(2): 412-434.
[16] MURPHY J, MAHONY J, AINSWORTH S, et al. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence[J]. Applied and Environmental Microbiology,2013,79(24):7547-7555.
[17] BICKLE TA, KRÜGER DH. Biology of DNA restriction[J]. Microbiology Reviews,1993,57(2):434-450.
[18] LEPIKHOV K, TCHERNOV A, ZHELEZNAJA L, et al. Characterization of the type IV restriction modification system BspLU11III from Bacillus sp. LU11[J]. Nucleic Acids Research,2001,29(22):4691-4698.
[19] HUMBERT O, DORER MS, SALAMA NR. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination[J]. Molecular Microbiology,2011,79(2):387-401.
[20] BHEEMANAIK S, REDDY YV, RAO DN. Structure, function and mechanism of exocyclic DNA methyltransferases[J]. Biochemical Journal,2006,399(2):177-190.
[21] BICKLE TA, KRÜGER DH. Biology of DNA restriction[J]. Microbiology Reviews,1993,57(2):434-450.
[22] KUMAR R, RAO DN. Role of DNA methyltransferases in epigenetic regulation in bacteria[J]. Subcellular Biochemistry,2013,31:81-102.
[23] OLIVEIRA PH, FANG G. Conserved DNA Methyltransferases: A window into fundamental mechanisms of epigenetic regulation in bacteria[J]. Trends in Microbiology,2021,29(1):28-40.
[24] ALDERMAN MH, XIAO AZ. N(6)-Methyladenine in eukaryotes[J]. Cellular And Molecular Life Sciences,2019,76(15):2957-2966.
[25] 张文婷,姚玉峰. 细菌DNA甲基化研究进展[J]. 生物化学与生物物理进展,2018,45(10):1026-1038.
[26] MILITELLO KT, SIMON RD, QURESHI M, et al. Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli[J]. FEMS Microbiology Letters, 2012,328(1):78-85.
[27] O'CONNELL MOTHERWAY M, WATSON D, BOTTACINI F, et al. Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis[J]. PLoS One,2014,9(4):e94875.
[28] CHAO MC, ZHU SJ, KIMURA S, et al. Correction: A cytosine methytransferase modulates the cell envelope stress response in the cholera pathogen[J]. PLoS Genetics,2015,11(12):e1005739.
[29] SEIB KL, JEN FE, TAN A, et al. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis[J]. Nucleic Acids Research,2015,43(8):4150-4162.
[30] MOUAMMINE A, COLLIER J. The impact of DNA methylation in Alphaproteobacteria[J]. Molecular Microbiology,2018,110(1):1-10.
[31] ROBERTSON GT, REISENAUER A, WRIGHT R, et al. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages[J]. Journal of Bacteriology,2000,182(12):3482-3489.
[32] DOBERENZ S, ECKWEILER D, REICHERT O, et al. Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its Targets, and physiological roles[J]. mBio,2017,8(1):e02312-16..
[33] KUMAR S, KARMAKAR BC, NAGARAJAN D, et al. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori[J]. Nucleic Acids Research,2018,46(7):3429-3445.
[34] FANG G, MUNERA D, FRIEDMAN DI, et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing[J]. Nature Biotechnology,2012,30(12):1232-1239.
[35] CORRENTI J, MUNSTER V, CHAN T, et al. Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant[J]. Molecular Microbiology,2002,44(2):521-532.
[36] SRIKHANTA YN, GORRELL RJ, POWER PM, et al. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori[J]. Scientific Reports,2017,7(1):16140.
[37] FROMMER M, MCDONALD LE, MILLAR DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J]. Proceedings Of The National Academy Of Sciences Of The United States Of America,1992,89:1827–1831.
[38] GOUIL Q, KENIRY A. Latest techniques to study DNA methylation [J]. Essays in Biochemistry,2019,63(6):639-648.
[39] 黄琼林,文娟,李兆锦,等. LC-MS/MS法测定药用植物基因组DNA甲基化水平[J]. 中国药房,2016,27(16):2210-2213.
[40] FLUSBERG BA, WEBSTER DR, LEE JH, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing[J]. Nature Methods,2010,7(6):461-465.
[41] BLOW MJ, CLARK TA, DAUM CG, et al. The epigenomic landscape of prokaryotes[J]. PLoS Genetics,2016,12(2):e1005854.
[42] LEGGETT RM, CLARK MD. A world of opportunities with nanopore sequencing[J]. Journal of Experimental Botany,2017,68(20):5419-5429.
[43] 张航,胡俊杰,汤瑞华,等. 高效液相色谱-串联质谱检测基因组DNA甲基化方法的建立[J]. 生物技术通讯,2014, 25(04):537-541.
[44] POOLE K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms[J]. Journal of Microbiology and Biotechnology,2001,3(2):255-264.
[45] LISTER PD, WOLTER DJ, HANSON ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms[J]. Clinical Microbiology Reviews,2009,22(4):582-610.
[46] SHAWVER LK, SLAMON D, ULLRICH A. Smart drugs: tyrosine kinase inhibitors in cancer therapy[J]. Cancer Cell,2002,1(2):117-123.
[47] RASAMIRAVAKA T, LABTANI Q, DUEZ P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms[J]. Biomed Research International,2015(2015):759348.
[48] LEE J, ZHANG L. The hierarchy quorum sensing network in Pseudomonas aeruginosa[J]. Protein Cell,2015,6(1):26-41.
[49] HA DG, O'TOOLE GA. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review[J]. Microbiology Spectrum,2015,3(2):Mb-0003-2014.
[50] LIU C, SUN D, ZHU J, et al. Two-component signal transduction systems: a major strategy for connecting input stimuli to biofilm formation[J]. Frontiers in Microbiology,2019,9:3279.
[51] SCHULZ S, ECKWEILER D, BIELECKA A, et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk[J]. PLOS Pathogens,2015,11(3):e1004744.
[52] HUANG H, SHAO X, XIE Y, et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa[J]. Nature Communications,2019,10(1):2931.
[53] WHITELEY M, DIGGLE SP, GREENBERG EP. Corrigendum: progress in and promise of bacterial quorum sensing research[J]. Nature,2018,555(7694):126.
[54] SCHUSTER M, LOSTROH C P, OGI T, et al. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis[J]. Journal of Bacteriology,2003,185(7):2066-2079.
[55] WHITELEY M, LEE KM, GREENBERG EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa [J]. Proceedings Of The National Academy Of Sciences Of The United States Of America,1999,96(24):13904-13909.
[56] SCHUSTER M, GREENBERG EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa[J]. International Journal of Medical Microbiology,2006,296:73-81.
[57] HENTZER M, EBERL L, NIELSEN J, et al. Quorum sensing: a novel target for the treatment of biofilm infections[J]. BioDrugs,2003,17(4):241-250.
[58] JAYARAMAN A, WOOD TK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease[J]. Annual Review of Biomedical Engineering,2008,10:145-167.
[59] UEDA A, WOOD TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885)[J]. PLOS Pathogens,2009,5(6):e1000483.
[60] DAVEY ME, CAIAZZA NC, O'TOOLE GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1[J]. Journal of Bacteriology,2003,185(3):1027-1036.
[61] WHITCHURCH CB, TOLKER-NIELSEN T, RAGAS PC, et al. Extracellular DNA required for bacterial biofilm formation[J]. Science,2002,295(5559):1487.
[62] KEARNS DB. Flagellar stators activate a diguanylate cyclase to inhibit flagellar stators[J]. Journal of Bacteriology,2019,201(18):e00186-19.
[63] HA DG, O'TOOLE GA. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review[J]. Microbiology Spectrum,2015,3(2):Mb-0003-2014.
[64] AZIRE A, SHIOYA K, SOUM-SOUTÉRA E, et al. The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa[J]. Journal of Bacteriology,2010,192(12):3001-3010.
[65] BRAUN V, MAHREN S, OGIERMAN M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling [J]. Current Opinion in Microbiology,2003,6(2):173-180.
[66] JONES CJ, NEWSOM D, KELLY B, et al. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa [J]. PLOS Pathogens,2014,10(3):e1003984.
[67] HICKMAN J W, HARWOOD CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor[J]. Molecular Microbiology,2008,69(2):376-389.
[68] BRENCIC A, MCFARLAND KA, MCMANUS HR, et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs[J]. Molecular Microbiology,2009,73(3):434-445.
[69] LIZEWSKI SE, SCHURR JR, JACKSON DW, et al. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis [J]. Journal of Bacteriology,2004,186(17):5672-5684.
[70] KAPLAN JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses[J]. Journal of Dental Research,2010,89(3):205-218.
[71] COSTERTON JW, STEWART PS, GREENBERG EP. Bacterial biofilms: a common cause of persistent infections[J]. Science,1999,284(5418):1318-1322.
[72] SUN D, ACCAVITTI MA, BRYERS JD. Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein[J]. Clinical and Diagnostic Laboratory Immunology,2005,12(1):93-100.
[73] ROY R, TIWARI M, DONELLI G, et al. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action[J]. Virulence,2018,9(1):522-554.
[74] TUSON HH, WEIBEL DB. Bacteria-surface interactions[J]. Soft Matter,2013,9(17):4368-4380.
[75] DAVIES DG, PARSEK MR, PEARSON JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science,1998,10(5361):295-298.
[76] HENTZER M, EBERL L, GIVSKOV M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation[J]. Biofilms,2005,2(1),37-61.
[77] SAUER K, CAMPER AK, EHRLICH GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm[J]. Journal of Bacteriology,2002,184(4):1140-1154.
[78] CHUA SL, YAM JK, HAO P, et al. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms[J]. Nature Communications,2016,7:10750.
[79] COSTERTON JW, STEWART PS, GREENBERG EP. Bacterial biofilms: A common cause of persistent infections[J]. Science,1999,284(5418):1318-1322.
[80] LAMONT IL, BEARE PA, OCHSNER U, et al. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa[J]. Proceedings Of The National Academy Of Sciences Of The United States Of America,2002,99(10),7072-7077.
[81] CORRENTI C, STRONG RK. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool[J]. Journal of Biological Chemistry,2012,287(17):13524-13531.
[82] CUNRATH O, GEOFFROY VA, SCHALK IJ. Metallome of Pseudomonas aeruginosa: a role for siderophores[J]. Environmental microbiology,2016,18(10):3258-3267.
[83] YOUARD ZA, WENNER N, REIMMANN C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species[J]. Biometals,2011,24(3):513-522.
[84] COBESSI D, CELIA H, PATTUS F. Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa[J]. Journal of Molecular Biology,2005,352(4):893-904.
[85] MANZOOR S, AHMED A, MOIN ST. Iron coordination to pyochelin siderophore influences dynamics of FptA receptor from Pseudomonas aeruginosa: a molecular dynamics simulation study[J]. Biometals,2021,34(5):1099-1119.
[86] FUCHS R, SCHÄFER M, GEOFFROY V, et al. Siderotyping--a powerful tool for the characterization of pyoverdines[J]. Current Topics in Medicinal Chemistry,2001,1(1):31-57.
[87] Meyer JM, Neely A, Stintzi A, et al . Pyoverdin is essential for virulence of Pseudomonas aeruginosa[J]. Infection and Immunity,1996,64(2):518-523.
[88] WILDERMAN PJ, VASIL AI, JOHNSON Z, et al. Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa[J]. Infection and Immunity,2001,69(9):5385-5394.
[89] BRAUN V. Iron uptake by Escherichia coli[J]. Frontiers in Molecular Biosciences,2003,1(8):1409-1421.
[90] VISCA P, IMPERI F, LAMONT IL. Pyoverdine siderophores: from biogenesis to biosignificance[J]. Trends in Microbiology,2007,15(1):22-30.
[91] NELSON CE, HUANG W, BREWER LK, et al. Proteomic analysis of the Pseudomonas aeruginosa iron starvation response reveals PrrF small regulatory RNA-dependent iron regulation of twitching motility, amino acid metabolism, and zinc homeostasis proteins[J]. Journal of Bacteriology,2019,201(12):e00754-18.
[92] OGLESBY AG, FARROW JM, LEE JH, et al. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing[J]. Journal of Biological Chemistry,2008,283(23):15558-15567.
[93] GLANVILLE DG, MULLINEAUX-SANDERS C, CORCORAN CJ, et al. A high-throughput method for identifying novel genes that influence metabolic pathways reveals new iron and heme regulation in Pseudomonas aeruginosa[J]. mSystems,2021,6(1):e00933-20.
[94] GRASEMANN H, IOANNIDIS I, TOMKIEWICZ RP, et al. Nitric oxide metabolites in cystic fibrosis lung disease[J]. Archives of Disease in Childhood,1998,78:49-53.
[95] KAKISHIMA K, SHIRATSUCHI A, TAOKA A, et al. Participation of nitric oxide reductase in survival of Pseudomonas aeruginosa in LPS-activated macrophages[J]. Biochemical and Biophysical Research Communications,2007,355(2):587-591.
[96] ZUMFT WG. Cell biology and molecular basis of denitrification[J]. Microbiology & Molecular Biology Reviews,1997,61(4):533-616.
[97] ARAT S, BULLERJAHN GS, LAUBENBACHER R. A network biology approach to denitrification in Pseudomonas aeruginosa[J]. PLoS One,2015,10(2):e0118235.
[98] WANNER BL. Gene regulation by phosphate in enteric bacteria[J]. Journal of Cellular Biochemistry,1993,51(1):47-54.
[99] GALAN-VASQUEZ E, LUNA B, MARTINEZ-ANTONIO A. The Regulatory Network of Pseudomonas aeruginosa[J]. Microbial Informatics and Experimentation,2011,1(1):3.
[100]ARAI H. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa[J]. Frontiers in Microbiology,2011,2:103.
[101]SCHREIBER K, KRIEGER R, BENKERT B, et al. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration[J]. Journal of Bacteriology,2007,189(11):4310-4314.
[102]GIARDINA G, RINALDO S, JOHNSON KA, et al. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR[J]. Journal of Molecular Biology,2008,378(5):1002-1015.
[103]SHAO X, ZHANG X, ZHANG Y, et al. RpoN-dependent direct regulation of quorum sensing and the type VI secretion system in Pseudomonas aeruginosa PAO1 [J]. Journal of Bacteriology, 2018, 200(16):e00205-18.
[104]DURAND S, GUILLIER M. Transcriptional and post-transcriptional control of the nitrate respiration in bacteria[J]. Frontiers in Molecular Biosciences,2021,8:667758.
[105]MILES JA, EGAN JL, FOWLER JA, et al. The evolutionary origins of peroxynitrite signalling[J]. Biochemical and Biophysical Research Communications,2021,580:107-112.
[106]HUANG Y, WANG Y, XU J, et al. Propacin, a coumarinolignoid isolated from durian, inhibits the lipopolysaccharide-induced inflammatory response in macrophages through the MAPK and NF-kappaB pathways[J]. Food & Function,2020,11(1):596-605.
[107]VAZQUEZ-TORRES A, BAUMLER A J. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens[J]. Current Opinion in Microbiology,2016,29:1-8.
[108]ABDELHAMED H, NHO SW, KARSI A, et al. The role of denitrification genes in anaerobic growth and virulence of Flavobacterium columnare[J]. Journal of Applied Microbiology,2021,130(4):1062-1074.
[109]LIU J, DONG Y, WANG N, et al. Diverse effects of nitric oxide reductase NorV on Aeromonas hydrophila virulence-associated traits under aerobic and anaerobic conditions[J]. Veterinary Research,2019,50(1):67.
[110]HUANG W, HAMOUCHE JE, WANG G, et al. Integrated genome-wide analysis of an isogenic pair of Pseudomonas aeruginosa clinical isolates with differential antimicrobial resistance to Ceftolozane/Tazobactam, Ceftazidime/Avibactam, and Piperacillin/Tazobactam[J]. International Journal of Molecular Sciences,2020,21(3):1026.
[111]FISCHER S, ROMLING U, TUMMLER B. A unique methylation pattern by a type I HsdM methyltransferase prepares for DpnI rare cutting sites in the Pseudomonas aeruginosa PAO1 genome[J]. FEMS Microbiology Letters,2019,366(5):fnz053.
[112]ANTON BP, ROBERTS RJ. Beyond restriction modification: epigenomic roles of DNA methylation in prokaryotes[J]. Annual Review of Microbiology,2021,75:129-149.
[113]BEAULAURIER J, SCHADT EE, FANG G. Deciphering bacterial epigenomes using modern sequencing technologies[J]. Nature Reviews Genetics,2019,20(3):157-172.
[114]SÁNCHEZ-ROMERO MA, OLIVENZA DR, GUTIÉRREZ G, et al. Contribution of DNA adenine methylation to gene expression heterogeneity in Salmonella enterica[J]. Nucleic Acids Research,2020,48(21):11857-11867.
[115]MODLIN SJ, CONKLE-GUTIERREZ D, KIM C, et al. Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates[J]. Elife,2020,9:e58542.
[116]QU JX, CAI Z, LIU YM, et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer[J]. Front Cell Infect Microbiol,2021,11:641920.
[117]ROBERTS RJ, VINCZE T, POSFAI J, et al. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes[J]. Nucleic acids research,2015,43:D298-D299.
[118]SCHÄFER A, TAUCH A, JÄGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene,1994,145(1):69-73..
[119]KESSLER B, DE LORENZO V, TIMMIS KN. A general system to integratelacZ fusions into the chromosomes of gram-negative eubacteria: regulation of thePm promoter of theTOL plasmid studied with all controlling elements in monocopy[J]. Molecular and General Genetics,1992,233(1-2):293-301.
[120]HOANG TT, KUTCHMA AJ, BECHER A, et al. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains[J]. Plasmid,2000,43(1):59-72.
[121]OLSEN RH, DEBUSSCHER G, MCCOMBIE WR. Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome[J]. Journal of Bacteriology,1982,150(1):60-69.
[122]HENTZER M, RIEDEL K, RASMUSSEN TB, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound[J]. Microbiology,2002,148(Pt 1):87-102.
[123]ZHAO Y, LU M, ZHANG H, et al. Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J[J]. Nucleic Acids Research,2015,43(11):5550-5559.
[124]JANDER G, RAHME LG, AUSUBEL FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects[J]. Journal of Bacteriology,2000,182(13):3843-3845.
修改评论