[1] SIBBETT W, LAGATSKY A A, BROWN C. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7):6989-7001.
[2] WRIGHT L G, RENNINGER W H, CHRISTODOULIDES D N, et al. Spatiotemporal dynamics of multimode optical solitons[J]. Optics Express, 2015, 23(3):3492-3506.
[3] MAYTEEVARUNYOO T, MALOMED B A, SKRYABIN D V. Spatiotemporal dissipative solitons and vortices in a multi-transverse-mode fiber laser[J]. Optics Express, 2019, 27(26):37364-37373.
[4] KRUPA K, TONELLO A, SHALABY B, et al. Spatial beam self-cleaning in multimode fibres[J]. Nature Photon, 2017, 11(4):237-241.
[5] FU W, WRIGHT L G, PAVEL S, et al. Several new directions for ultrafast fiber lasers [Invited][J]. Optics Express, 2018, 26(8):9432-9463.
[6] 曾和平, 彭俊松. 锁模光纤激光器时变动力学[J]. 光学学报, 2021, 41(1):0114005.
[7] FRANCESCO, POLETTI, PETER, et al. Description of ultrashort pulse propagation in multimode optical fibers[J]. Journal of the Optical Society of America B, 2008, 25(10):1645-1654.
[8] YASIN M. Recent progress in optical fiber research || Multimode nonlinear fibre optics: theory and applications[M]. 2012, (Chapter 1).
[9] WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Spatiotemporal mode-locking in multimode fiber lasers[J], Science, 2017, 358(6359):94-97.
[10] CHANG G Q, WEI Z Y. Ultrafast fiber lasers: an expanding versatile toolbox[J]. iScience, 2020, 23(5):101101.
[11] KAO K C, HOCKHAM G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Electromagnetic Wave Theory, 1967, 113(3):441-444.
[12] ETZEL H W, GANDY H W, GINTHER R J. Stimulated emission of infrared radiation from ytterbium activated silicate glass[J]. Applied Optics, 1962, 1(4):534-536.
[13] DZHIBLADZE M I, ESIASHVILI, Z G, et al. Mode locking in a fiber laser[J]. Soviet Journal of Quantum Electronics, 1983, 10(2):245-247.
[14] FERMANN M E, HOFER M, HABERL F, et al. Femtosecond fibre laser[J]. Electronics Letters, 1990, 26(20):1737-1738.
[15] KELLER U, KNOX W H, ROSKOS H. Coupled-cavity resonant passive mode-locked Ti: sapphire laser[J]. Optics Letters, 1990, 15(23):1377-1379.
[16] HONG S, LEDEE F, PARK J, et al. Mode-locking of all-fiber lasers operating at both anomalous and normal dispersion regimes in the C- and L-bands using thin film of 2D perovskite crystallites[J]. Laser & Photonics Review, 2018, 12(11):1800118.
[17] ROBERT W, EDMUND K. 2D saturable absorbers for fibre lasers[J]. Applied Sciences, 2015, 5(4):1440-1456.
[18] BAO Q, ZHANG H, WANG Y, et al. Atomic-Layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19):3077-3083.
[19] FERMANN M E, ANDREJCO M J, SILBERBERG Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 1993, 18(11):894-896.
[20] DORAN N J, WOOD D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1):56-58.
[21] FERMANN M E, HABERL F, HOFER M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13):752-754.
[22] YANG Y, HAO T, HUIBO W, et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM[J]. Optics Express, 2018, 26(8):10428-10434.
[23] DENG D C, ZHANG H T, GONG Q H, et al. Energy scalability of the dissipative soliton in an all-normal-dispersion fiber laser with nonlinear amplifying loop mirror[J]. Optics & Laser Technology, 2020, 125:106010.
[24] MOLLENAUER L, STOLEN R, GORDON J. Experimental observations of picosecond pulse narrowing and solitons in optical fibers[J]. IEEE Journal of Quantum Electronics, 1981, 17(12):2378-2378.
[25] NELSON L E, JONES D J, TAMURA K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B, 1997, 65(2):277-294.
[26] WU X, TANG D Y, ZHAO L M, et al. Effective cavity dispersion shift induced by nonlinearity in a fiber laser[J]. Physical Review A, 2009, 80(80):013804.
[27] ZHOU X, YOSHITOMI D, KOBAYASHI Y, et al. Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator[J]. Optics Express, 2008, 16(10):7055-7059.
[28] TAMURA K, HAUS H A. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 1992, 28(24):2226-2228.
[29] TAMURA K, IPPEN E P, HAUS H A. Pulse dynamics in stretched-pulse fiber lasers[J]. Applied Physics Letters, 1995, 67(2):158-160.
[30] ANDERSON D, DESAIX M, KARLSSON M, et al. Wave-breaking free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 1993, 10(7):1185-1190.
[31] ILDAY F O, BUCKLEY J R, CLARK W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21):213902.
[32] NIE B B, PESTOV D D, WISE F W, et al. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment[J]. Optics Express, 2011, 19(13):12074-12080.
[33] PEACOCK A C, KRUHLAK R J, HARVEY J D, et al. Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion[J]. Optics Communications, 2002, 206(1-3):171-177.
[34] CHONG A, BUCKLEY J, RENNINGER W , et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21):10095-10100.
[35] GRELU P, AKHMEDIEV N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2010, 6(2):84-92.
[36] CHONG A, RENNINGER W, WISE F. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 2007, 32(16):2408-2410.
[37] ABDELALIM M A, LOGVIN Y, KHALIL D A, et al. Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser[J]. Optics Express, 2009, 17(15):13128-13139.
[38] LIU ZW, ZIEGLER Z M, WRIGHT L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6):649-654.
[39] LIU W, LIAO R, ZHAO J, et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 2019, 6(2):194-197.
[40] 张海涛, 邓德才, 李宇航, 等. 基于非线性环形放大镜和微纳光纤锁模激光器的研究现状[J]. 中国激光, 2021, 48(15):1501006.
[41] FRANCESCO, POLETTI, PETER, et al. Description of ultrashort pulse propagation in multimode optical fibers[J]. Journal of the Optical Society of America B, 2008, 25(10):1645-1654.
[42] HORAK P, POLETTI F. Multimode nonlinear fibre optics: theory and applications[M]. 2012.
[43] WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Controllable spatiotemporal nonlinear effects in multimode fibres[J]. Nature Photonics, 2015, 9(5):306-310.
[44] WRIGHT L G, SIDORENKO P, POURBEYRAM H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16:565-570.
[45] TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering[J]. Optics Express, 2020, 28(16):23433-23438.
[46] TEĞIN U, RAHMANI B, KAKKAVA E, et al. Single mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2(5):056005.
[47] HAIG H, SIDORENKO P, DHAR A, et al. Multimode Mamyshev oscillator[J]. Optics Letters, 2022, 47(1):46-49.
[48] QIN H, XIAO X, WANG P, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9):1982-1985.
[49] DING YH, XIAO XS, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers[J]. Optics express, 2019, 27(8):11435-11446.
[50] DING YH, XIAO XS, LIU KW, et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 2021, 126(9):093901.
[51] LIU KW, XIAO XS, YANG CX, Observation of transition between multimode Q-switching and spatiotemporal mode locking[J]. Photonics Research, 2021, 9(4):530-534.
[52] WU H, LIN W, TAN YJ, et al. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13(2):022008.
[53] DAI C, DONG Z, LIN J, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik-International Journal for Light and Electron Optics, 2021, 243(10):167487.
[54] GLOGE D, MARCATILI E A J. Multimode theory of graded core fibers[J]. Bell Labs Technical Journal, 1973, 52(9):1563-1578.
[55] WRIGHT L G, ZIEGLER Z M, LUSHNIKOV P M, et al. Multimode nonlinear fiber optics: massively parallel numerical solver, tutorial and outlook[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(3):1-16.
[56] 吴叶涛. 基于多模光纤的时空孤子数值仿真研究[D]. 杭州: 浙江大学, 2020.
[57] KELLER U, MILLER D A B, BOYD G D, et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor fabry-perot saturable absorber[J]. Optics Letters, 1992, 17(7):505-507.
[58] MATSAS V J, NEWSON T P. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15):1391-1393.
[59] DORAN N J, WOOD D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1):56-58.
[60] REGELSKIS K, ELUDEVIIUS, JULIJANAS, et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 2015, 40(22):5255-5258.
[61] LUO Z, HUANG Y, WENG J, et al. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber[J]. Optics Express, 2013, 21(24):29516-29522.
[62] ALVAREZ-CHAVEZ J A, OFFERHAUS H L, NILSSON J, et al. High-energy, high-power ytterbium-doped Q-switched fiber laser[J]. Optics Letters, 2000, 25(1):37-39.
[63] SCHMIDT O, ROTHHARDT J, RÖSER F, et al. Millijoule pulse energy Q-switched short-length fiber laser[J]. Optics Letters, 2007, 32(11):1551-1553.
[64] LIMPERT J, ROSER F, KLINGEBIEL S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3):537-545.
[65] SHEN Y, WANG Y, LUAN K, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6(1):26659.
[66] OFFERHAUS H L, BRODERICK N G, RICHARDSON D J, et al. High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber[J]. Optics Letters, 1998, 23(21):1683-1685.
[67] FAN Y X, LU F Y, HU S L, et al. Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser[J]. Optics Letters, 2004, 29(7):724-726.
[68] KALICHEVSKY-DONG M T, GE WP, HAWKINS T W, et al. 4.8 mJ pulse energy directly from single-mode Q-switched ytterbium fiber lasers[J], Optics Express, 2021, 29(19):30384-30391.
[69] WOHLMUTH M, PFLAUM C, ALTMANN K, et al. Dynamic multimode analysis of Q-switched solid state laser cavities[J]. Optics Express, 2009, 17(20):17303-17316.
[70] FAN F, PFLAUM C. Modeling passively Q-switched solid state lasers with multimode[J]. Applied Mathematical Modelling, 2014, 38(24):6052-6065.
[71] LIU X M, POPA D, AKHMEDIEV N. Revealing the transition dynamics from Q switching to mode locking in a soliton laser[J]. Physical Review Letters, 2019, 123(9):093901.
[72] SVELTO, ORAZIO. Principles of Lasers[M]. Springer US, 2010.
[73] KOMAROV A, LEBLOND H, SANCHEZ F. Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation[J]. Physical Review A, 2005, 72(6):63811.
[74] LONG JG, GAO YX, LIN W, et al. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3):588-591.
[75] WRIGHT L G. Spatiotemporal nonlinear optics in multimode fibers[D]. New York: Cornell University, 2018.
[76] TERRY N B, ALLEY T G, RUSSELL T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers[J]. Optics Express, 2007, 15(26):17509-17519.
修改评论