中文版 | English
题名

宽量程高线性度柔性压力传感器的逆向设计

姓名
姓名拼音
CAI Minkun
学号
11930496
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
郭传飞
导师单位
材料科学与工程系
论文答辩日期
2022-04-28
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       线性输出可有效降低传感器系统的复杂性与信息处理难度,进而降低生产与使用成本。然而线性输出在新兴的柔性传感领域仍存在技术空白。当前柔性传感器研究的输出特性主要由材料与微结构控制,现行研究往往凭主观经验对上述因素进行调节或匹配以实现线性输出,以上正向设计思路不仅耗时耗力,且结果难以预测,成功实现案例极少。
       为突破正向设计思路的局限性,本工作以基于双电层模型的离子-电子传感机制为例,结合宽量程内高线性度的最终目标,有指向性地进行逆向预测,通过基于代理模型的两步机器学习策略,有效降低了运算复杂度,只需一周的迭代运算,即可获取十二组线性拟合确定系数R2 在0.999 以上的高价值微结构模型,效率显著优于动辄数月的正向设计方法。随后借助高精度3D 打印技术与微结构翻模技术,将设计模型阵列构建到传感器传感层,并总结出从制备到质检的关键工艺流程。为减小模型验证的额外干扰,本工作对测试条件与环境因素进行探讨与排除,对离子-电子基材的物化特性提出新的要求。同时发展出一种基于电化学蚀刻的微结构-电极界面面积的高保真快速测量方法,有效增强了运算预测和实验反馈的联系。本工作所提出的微结构模型具有材料普适性,在不同的基材下均可实现0.995 以上的高线性,特别在聚乙烯醇基材上可实现1.6 MPa 超宽范围的高线性输出(R2 = 0.9996)。
      该工作为突破传统设计的低效问题,提出一种基于机器学习的逆向设计思路,结合高精 度3D 打印与微结构翻模技术,实现宽量程高线性度柔性压力传感器的高效设计,具有开发周期短、普适性强的优点,为高性能柔性压力传感器的研制提供了新思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 林全. 智能传感器市场投资分析报告 [J]. 机器人技术与应用, 2017, 6: 12-22.
[2] 殷毅. 智能传感器技术发展综述 [J]. 微电子学, 2018, 48(04): 504-507+519.
[3] 杨雨寒, 李扬, 赵婉雨, 等. 聚焦四大核心传感技术 挖掘可穿戴设备新增长极—可穿戴传感器产业技术分析报告 [J]. 高科技与产业化, 2019, 2: 36-47.
[4] 苏巴斯·钱德拉·穆科霍达耶, 塔里库尔·伊斯拉姆. 可穿戴传感器:应用、设计与实现 [M]. 北京: 机械工业出版社, 2020: 1-3.
[5] SMITH C S. Piezoresistance effect in germanium and silicon [J]. Physical Review, 1954, 94(1): 42-49.
[6] YE M Q, HE L L, HAN A J. Conductivity mechanism and electrical properties influence factors of filling conductive polymer composite materials [J]. New Chemical Materials, 2008, 36(11): 13-15.
[7] PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film [J]. Nature Communications, 2014, 5(1): 4002.
[8] LI J, BAO R R, TAO J, et al. Recent progress in flexible pressure sensor arrays: From design to applications [J]. Journal of Materials Chemistry C, 2018, 6(44): 11878-11892.
[9] SPENDER R R, FLEISCHER B M, BARTH P W, et al. A theoretical study of transducer noise in piezoresistive and capacitive silicon pressure sensors [J]. IEEE Transactions on Electron Devices, 1988, 35(8): 1289-1298.
[10] KAWAI H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7): 975-976.
[11] YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring [J]. Sensors and Actuators A: Physical, 2020, 301: 111789.
[12] DENG W, YANG T, JIN L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures [J]. Nano Energy, 2019, 55: 516-525.
[13] DAGDEVIREN C, JOE P, TUZMAN O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation [J]. Extreme Mechanics Letters, 2016, 9: 269-281.
[14] TAN P C, ZHAO C C, FAN Y B, et al. Research progress of self-powered flexible biomedical sensors [J]. Acta Physica Sinica, 2020, 69(17): 143-154.
[15] FAN F R, TANG W, WANG Z L. Flexible nanogenerators for energy harvesting and self-powered electronics [J]. Advanced Materials, 2016, 28(22): 4283-4305.
[16] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers [J]. Nature Materials, 2010, 9(10): 859-864.
[17] SCHWARTZ G, TEE B C K, MEI J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring [J]. Nature Communications, 2013, 4: 1859.
[18] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer [J]. Small, 2016, 12(36): 5042-5048.
[19] KANG S B, LEE J, LEE S, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing [J]. Advanced Electronic Materials, 2016, 2(12): 1600356.
[20] MISHRA R B, EL-ATAB N, HUSSAIN A M, et al. Recent progress on flexible capacitive pressure sensors: From design and materials to applications [J]. Advanced Materials Technologies, 2021, 6(4): 2001023.
[21] NIE B, XING S, BRANDT J D, et al. Droplet-based interfacial capacitive sensing [J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[22] CHEN J P, HUANG W B, JIANG Z Y, et al. Flexible and transparent planar supercapacitor based on embedded metallic mesh current collector [J]. Journal of Physics D: Applied Physics, 2020, 53(16): 165501.
[23] OLDHAM K B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface [J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138.
[24] SCHMICKLER W. Electronic effects in the electric double layer [J]. Chemical Reviews, 1996, 96(8): 3177-3200.
[25] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors? [J]. Chemical Reviews, 2005, 105(3): 1021-1021.
[26] SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors [J]. Chemical Reviews, 2018, 118(18): 9233-9280.
[27] BAI N N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity [J]. Nature Communications, 2020, 11(1): 209.
[28] WAN Y B, WANG Y, GUO C F. Recent progresses on flexible tactile sensors [J]. Materials Today Physics, 2017, 1: 61-73.
[29] WU J N, YAO Y G, ZHANG Y H, et al. Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range [J]. Nanoscale, 2020, 12(41): 21198-21206.
[30] CHEN W F, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review [J]. Journal of Materials Science & Technology, 2020, 43: 175-188.
[31] WONG R D P, POSNER J D, SANTOS V J. Flexible microfluidic normal force sensor skin for tactile feedback [J]. Sensors and Actuators A-Physical, 2012, 179: 62-69.
[32] CHENG M Y, LIN C L, LAI Y T, et al. A polymer-based capacitive sensing array for normal and shear force measurement [J]. Sensors, 2010, 10(11): 10211-10225.
[33] QIU Z G, WAN Y B, ZHOU W H, et al. Ionic skin with biomimetic dielectric layer templated from Calathea Zebrine leaf [J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[34] TEE B C K, CHORTOS A, DUNN R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics [J]. Advanced Functional Materials, 2014, 24(34): 5427-5434.
[35] NA C H, YUN K S. Capacitive force sensor with wide dynamic range using wrinkled micro structures as dielectric layer [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(10): 6663-6667.
[36] ELSAYES A, SHARMA V, YIANNACOU K, et al. Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer [J]. Advanced Sustainable Systems, 2020, 4(9): 2000056.
[37] GUO Y, ZHONG M, FANG Z, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing [J]. Nano Letters, 2019, 19(2): 1143-1150.
[38] SU Q, HUANG X, LAN K B, et al. Highly sensitive ionic pressure sensor based on concave meniscus for electronic skin [J]. Journal of Micromechanics and Microengineering, 2020, 30(1): 015009.
[39] WAN Y B, QIU Z G, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin [J]. Small, 2018, 14(35): 801657.
[40] ZHANG T, LI Z, LI K, et al. Flexible pressure sensors with wide linearity range and high sensitivity based on selective laser sintering 3D printing [J]. Advanced Materials Technologies, 2019, 4(12): 1900679.
[41] RUTH S R A, BEKER L, TRAN H, et al. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals [J]. Advanced Functional Materials, 2020, 30(29): 1903100.
[42] BOUTRY C M, NEGRE M, JORDA M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics [J]. Science Robotics, 2018, 3(24): eaau6914.
[43] LI M M, LIANG J M, WANG X D, et al. Ultra-sensitive flexible pressure sensor based on microstructured electrode [J]. Sensors, 2020, 20(2): 371.
[44] CHENG W, WANG J, MA Z, et al. Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode [J]. IEEE Electron Device Letters, 2018, 39(2): 288-291.
[45] LU P, WANG L, ZHU P, et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes [J]. Science Bulletin, 2021, 66(11): 1091-1100.
[46] YANG J, LUO S, ZHOU X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes [J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006.
[47] SHAO Y W, ZHANG Q, ZHAO Y L, et al. Flexible pressure sensor with micro-structure arrays based on PDMS and PEDOT:PSS/PUD&CNTs composite film with 3D printing [J]. Materials, 2021, 14(21): 6499.
[48] XIONG Y X, SHEN Y K, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring [J]. Nano Energy, 2020, 70: 104436.
[49] RANA A, ROBERGE J P, DUCHAINE V. An improved soft dielectric for a highly sensitive capacitive tactile sensor [J]. IEEE Sensors Journal, 2016, 16(22): 7853-7863.
[50] BAEK S, JANG H, KIM S Y, et al. Flexible piezocapacitive sensors based on wrinkled microstructures: toward low-cost fabrication of pressure sensors over large areas [J]. RSC Advances, 2017, 7(63): 39420-39426.
[51] LEE J Y, AN J, CHUA C K. Fundamentals and applications of 3D printing for novel materials [J]. Applied Materials Today, 2017, 7: 120-133.
[52] LIU C, HUANG N, XU F, et al. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin [J]. Polymers, 2018, 10(6): 629.
[53] KHOSRAVANI M R, REINICKE T. 3D-printed sensors: Current progress and future challenges [J]. Sensors and Actuators A: Physical, 2020, 305: 111916.
[54] XIA T, YU R, YUAN J, et al. Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins [J]. Advanced Materials Technologies, 2021, 6(3): 2000984.
[55] ZHU G T, DAI H T, YAO Y, et al. 3D printed skin-inspired flexible pressure sensor with gradient porous structure for tunable high sensitivity and wide linearity range [J]. Advanced Materials Technologies, 2021: 2101239.
[56] LI T, PAN P, YANG Z, et al. 3D printing of a flexible inclined-tip cone array-based pressure sensor [J]. Advanced Materials Technologies, 2021: 2101135.
[57] 雅各布·弗雷登. 现代传感器手册:原理、设计及应用 [M]. 北京: 机械工业出版社, 2019: 16-17.
[58] 包宏权. 压力传感器结构设计和优化分析 [D]. 东南大学, 2016: 9-10.
[59] DENG W L, HUANG X J, CHU W J, et al. Microstructure-based interfacial tuning mechanism of capacitive pressure sensors for electronic skin [J]. Journal of Sensors, 2016, 2016: 2428305.
[60] 沈仲平. 线性传感器拟合参考直线的选择 [J]. 工业计量, 2001, (S1): 206-208.
[61] HILLE P, HöHLER R, STRACK H. A linearisation and compensation method for integrated sensors [J]. Sensors and Actuators A: Physical, 1994, 44(2): 95-102.
[62] YAMADA M, TAKEBAYASHI T, NOTOYAMA S I, et al. A switched-capacitor interface for capacitive pressure sensors [J]. IEEE Transactions on Instrumentation and Measurement, 1992, 41(1): 81-86.
[63] BAE G Y, PAK S W, KIM D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array [J]. Advanced Materials, 2016, 28(26): 5300-5306.
[64] YU A L. Research on the non-linearity compensation based on wavelet neural network for capacitance weighing sensor [J]. Microcomputer Information, 2010, 26(7): 49-50,33.
[65] 张处武, 胡学同. 高线性双电容位移式传感器的设计与应用 [J]. 传感器技术, 1998, 17(06): 29-31.
[66] LEE D S, TIWARI H D, KIM S Y, et al. A highly linear, small-area analog front end with gain and offset compensation for automotive capacitive pressure sensors in 0.35-μm CMOS [J]. IEEE Sensors Journal, 2015, 15(3): 1967-1976.
[67] LIU Q, ZHOU D X, ZHANG Z G, et al. Linear calibration and temperature compensation of capacitive pressure sensor [J]. Intstrument Technique and Sensor, 2010, (11): 1-2.
[68] XIE Y, YANG S X, LI X W. Nonlinear compensation of capacitance weighing transducer based on inverse fitting [J]. Chinese Journal of Scientific Instrument, 2007, 28(5): 923-927.
[69] YU A L, HUANG W Y, QIN G. Dynamic modeling and compensation method based on genetic neural network for new type robot wrist force sensor [J]. Chinese Journal of Mechanical Engineering, 2006, 42(12): 239-244.
[70] GUO W, ZHANG D, LI J T, et al. Nonlinear calibration of capacitance weighing sensor with improved BP neural network model [J]. Chinese Journal of Sensors and Actuators, 2012, 25(10): 1354-1360.
[71] PATRA J C, VAN DEN BOS A. Auto-calibration and -compensation of a capacitive pressure sensor using multilayer perceptrons [J]. ISA Transactions, 2000, 39(2): 175-190.
[72] SUN J. Sensor nonlinear error compensation evolved by neural network and particle swarm algorithm [J]. Electronic Components & Materials, 2005, 24(12): 17-19.
[73] ROSENGREN L, SöDERKVIST J, SMITH L. Micromachined sensor structures with linear capacitive response [J]. Sensors and Actuators A: Physical, 1992, 31(1-3): 200-205.
[74] KIM H, JEONG Y G, CHUN K K. Improvement of the linearity of a capacitive pressure sensor using an interdigitated electrode structure [J]. Sensors and Actuators A: Physical, 1997, 62(1-3): 586-590.
[75] ETTOUHAMI A, ZAHID N, ELBELKACEMI M. A novel capacitive pressure sensor structure with high sensitivity and quasi-linear response [J]. Comptes Rendus Mécanique, 2004, 332(2): 141-146.
[76] LV H J, GUO Q, HU G Q, et al. A touch mode capacitive pressure sensor with long linear range and high sensitivity; proceedings of the 3rd IEEE International Conference of Nano/Micro Engineered and Molecular Systems, Sanya, PEOPLES R CHINA, F Jan 06-09, 2008 [C]. IEEE: NEW YORK, 2008: 796-800.
[77] LIPOMI D J, VOSGUERITCHIAN M, TEE B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes [J]. Nature Nanotechnology, 2011, 6(12): 788-792.
[78] WOO S J, KONG J H, KIM D G, et al. A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors [J]. Journal of Materials Chemistry C, 2014, 2(22): 4415-4422.
[79] SUN J Y, KEPLINGER C, WHITESIDES G M, et al. Ionic skin [J]. Advanced Materials, 2014, 26(45): 7608-7614.
[80] QIN H, OWYEUNG R E, SONKUSALE S R, et al. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing [J]. Journal of Materials Chemistry C, 2019, 7(3): 601-608.
[81] MA L Q, YU X C, YANG Y Y, et al. Highly sensitive flexible capacitive pressure sensor with a broad linear response range and finite element analysis of micro-array electrode [J]. Journal of Materiomics, 2020, 6(2): 321-329.
[82] HU C F, WANG J Y, LIU Y C, et al. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application [J]. Nanotechnology, 2013, 24(44): 444006.
[83] WANG X, XU T, DONG S, et al. Development of a flexible and stretchable tactile sensor array with two different structures for robotic hand application [J]. RSC Advances, 2017, 7(76): 48461-48465.
[84] LUO Z B, CHEN J, ZHU Z F, et al. Microstructural-PVDF Dielectric Layer Based High-Resolution Flexible Capacitive Pressure Sensor; proceedings of the 16th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), Xiamen, PEOPLES R CHINA, F Apr 25-29, 2021 [C]. IEEE: NEW YORK, 2021: 647-651.
[85] CHOI H B, OH J, KIM Y, et al. Transparent pressure sensor with high linearity over a wide pressure range for 3D touch screen applications [J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16691-16699.
[86] TOLVANEN J, HANNU J, JANTUNEN H. Hybrid foam pressure sensor utilizing piezoresistive and capacitive sensing mechanisms [J]. IEEE Sensors Journal, 2017, 17(15): 4735-4746.
[87] DING H, WEN Z, QIN E, et al. Influence of the pore size on the sensitivity of flexible and wearable pressure sensors based on porous Ecoflex dielectric layers [J]. Materials Research Express, 2019, 6(6): 066304.
[88] SHARMA V V, KIM K N, HAN G H, et al. 3D multiscale gradient pores impregnated with Ag nanowires for simultaneous pressure and bending detection with enhanced linear sensitivity [J]. Advanced Materials Technologies, 2020, 5(4): 1901041.
[89] YOO D W, WON D J, CHO W S, et al. Double side electromagnetic interference-shielded bending-insensitive capacitive-type flexible touch sensor with linear response over a wide detection range [J]. Advanced Materials Technologies, 2021, 6(11): 2100358.
[90] WEI P Q, GUO X L, QIU X B, et al. Flexible capacitive pressure sensor with sensitivity and linear measuring range enhanced based on porous composite of carbon conductive paste and polydimethylsiloxane [J]. Nanotechnology, 2019, 30(45): 455501.
[91] GUO X H, HUANG Y, CAI X, et al. Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric [J]. Measurement Science and Technology, 2016, 28(4): 049401.
[92] ZHANG L, ZHANG S H, WANG C, et al. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics [J]. ACS Sensors, 2021, 6(7): 2630-2641.
[93] JI B, ZHOU Q, HU B, et al. Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range [J]. Advanced Materials, 2021, 33(27): 2100859.
[94] SHARMA S, CHHETRY A, ZHANG S P, et al. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range [J]. ACS Nano, 2021, 15(3): 4380-4393.
[95] XIAO Y, DUAN Y, LI N, et al. Multilayer double-sided microstructured flexible iontronic pressure sensor with a record-wide linear working range [J]. ACS Sensors, 2021, 6(5): 1785-1795.
[96] ZHENG Y, LIN T, ZHAO N, et al. Highly sensitive electronic skin with a linear response based on the strategy of controlling the contact area [J]. Nano Energy, 2021, 85: 106013.
[97] LIU Z C, ZHU D Y, RAJU L, et al. Tackling photonic inverse design with machine learning [J]. Advanced Science, 2021, 8(5): 2002923.
[98] SANCHEZ-LENGELING B, ASPURU-GUZIK A. Inverse molecular design using machine learning: Generative models for matter engineering [J]. Science, 2018, 361(6400): 360-365.
[99] FORTE A E, HANAKATA P Z, JIN L S, et al. Inverse design of inflatable soft membranes through machine learning [J]. Advanced Functional Materials, 2022: 2111610.
[100] PARK J H, LEE Y, HONG J Y, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures [J]. ACS Nano, 2014, 8(12): 12020-12029.
[101] SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove [J]. Nature, 2019, 569(7758): 698-702.
[102] ZHU M L, HE T Y Y, LEE C K. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems [J]. Applied Physics Reviews, 2020, 7(3): 031305.
[103] ZHU P, DU H F, HOU X Y, et al. Skin-electrode iontronic interface for mechanosensing [J]. Nature Communications, 2021, 12(1): 4731.
[104] ZHANG X J, TANG S Y, ZHAO H Y, et al. Research status and key technologies of 3D printing [J]. Journal of Materials Engineering, 2016, 44(2): 122-128.
[105] CHOI S J, KIM H N, BAE W G, et al. Modulus- and surface energy-tunable ultraviolet-curable polyurethane acrylate: properties and applications [J]. Journal of Materials Chemistry, 2011, 21(38): 14325-14335.
[106] LI L, MENG J, ZHANG M T, et al. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors [J]. Chemical Communications, 2022, 58(2): 185-207.
[107] ANJUM N, JOYAL N, IROEGBU J, et al. Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors [J]. Journal of Power Sources, 2021, 499: 229962.
[108] CHEN H Y, CHEN C C. Determination of optimal measurement points for calibration equations—Examples by RH sensors [J]. Sensors, 2019, 19(5): 1213.
[109] DURAIA E-S M, DAS S, BEALL G W. Humic acid nanosheets decorated by tin oxide nanoparticles and there humidity sensing behavior [J]. Sensors and Actuators B: Chemical, 2019, 280: 210-218.
[110] D’AMATO R, POLIMADEI A, TERRANOVA G, et al. Humidity sensing by Chitosan-coated Fibre Bragg Gratings (FBG) [J]. Sensors, 2021, 21(10): 3348.
[111] AZIZ S B, WOO T J, KADIR M F Z, et al. A conceptual review on polymer electrolytes and ion transport models [J]. Journal of Science: Advanced Materials and Devices, 2018, 3(1): 1-17.
[112] PAL P, GHOSH A. Ion conduction and relaxation mechanism in ionogels embedded with imidazolium based ionic liquids [J]. Journal of Applied Physics, 2019, 126(13): 135102.
[113] QU D Y, WANG G W, KAFLE J, et al. Electrochemical impedance and its applications in energy-storage systems [J]. Small Methods, 2018, 2(8): 1700342.
[114] ATKIN R, BORISENKO N, DRüSCHLER M, et al. Structure and dynamics of the interfacial layer between ionic liquids and electrode materials [J]. Journal of Molecular Liquids, 2014, 192: 44-54.
[115] WANG H N, PILON L. Intrinsic limitations of impedance measurements in determining electric double layer capacitances [J]. Electrochimica Acta, 2012, 63: 55-63.
[116] XU H, VIJ J K, MCBRIERTY V J. Wide-band dielectric spectroscopy of hydrated poly(hydroxyethyl methacrylate) [J]. Polymer, 1994, 35(2): 227-234.
[117] BOHIDAR H B, MAITY S, SAXENA A, et al. Dielectric behaviour of gelatin solutions and gels [J]. Colloid & Polymer Science, 1998, 276(1): 81-86.
[118] LI J, LIAN K. Investigation of hydroxide ion-conduction in solid polymer electrolytes via electrochemical impedance spectroscopy [J]. Electrochimica Acta, 2018, 288: 1-11.
[119] 张小磊. 高吸水性树脂的制备及表面交联的研究 [D]. 华南理工大学, 2014: 5-6.
[120] BAI Y Y, CHEN B H, XIANG F, et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt [J]. Applied Physics Letters, 2014, 105(15): 151903.
[121] RAGUNATHAN T, XU X G, WOOD C D. Gas phase dehydration using hydrogels [J]. Journal of Natural Gas Science and Engineering, 2018, 59: 1-8.
[122] MA X Z, ZHANG L, CAO G H, et al. Electrochemical micromachining of nitinol by confined-etchant-layer technique [J]. Electrochimica Acta, 2007, 52(12): 4191-4196.
[123] ZHANG L, MA X Z, ZHUANG J L, et al. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method [J]. Advanced Materials, 2007, 19(22): 3912-3918.
[124] CHUNG D K, SHIN H S, PARK M S, et al. Recent researches in micro electrical machining [J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(2): 371-380.
[125] ZHANG J, DONG B Y, JIA J C, et al. Electrochemical buckling microfabrication [J]. Chemical Science, 2016, 7(1): 697-701.
[126] KUMAR A, HSU K H, JACOBS K E, et al. Direct metal nano-imprinting using an embossed solid electrolyte stamp [J]. Nanotechnology, 2011, 22(15): 155302.
[127] HSU K H, SCHULTZ P L, FERREIRA P M, et al. Electrochemical nanoimprinting with solid-state superionic stamps [J]. Nano Letters, 2007, 7(2): 446-451.
[128] TANG J, ZHUANG J L, ZHANG L, et al. Cu micropatterning on n-Si(111) by selective electrochemical deposition using an agarose stamp [J]. Electrochimica Acta, 2008, 53(18): 5628-5631.
[129] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare [J]. Advanced Materials, 2016, 28(22): 4338-4372.
[130] YANG T T, XIE D, LI Z H, et al. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance [J]. Materials Science and Engineering: R: Reports, 2017, 115: 1-37.
[131] LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial [J]. Nano Energy, 2021, 87: 106181.
[132] PARK J, KIM M, LEE Y, et al. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli [J]. Science Advances, 2015, 1(9): e1500661.
[133] LIN Q P, HUANG J, YANG J L, et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring [J]. Advanced Healthcare Materials, 2020, 9(17): 2001023.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TP 212.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335736
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
蔡旻堃. 宽量程高线性度柔性压力传感器的逆向设计[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930496-蔡旻堃-材料科学与工程(10602KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蔡旻堃]的文章
百度学术
百度学术中相似的文章
[蔡旻堃]的文章
必应学术
必应学术中相似的文章
[蔡旻堃]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。