[1] PAN M F, GU Y, YUN Y G, et al. Nanomaterials for electrochemical immunosensing[J]. Sensors, 2017, 17(5): 1041-1064.
[2] YANG J Y, HOU B H, WANG J K, et al. Nanomaterials for the removal of heavy metals from wastewater[J]. Nanomaterials, 2019, 9(3): 424-462.
[3] WANG Z Q, WU S S, WANG J, et al. Carbon nanofiber-based functional nanomaterials for sensor applications[J]. Nanomaterials, 2019, 9(7): 1045-1062.
[4] SU S, KANG P M. Systemic review of biodegradable nanomaterials in nanomedicine[J]. Nanomaterials, 2020, 10(4): 656-676.
[5] LIU J L, HUI D, LAU D. Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications[J]. Nanotechnology Reviews, 2022, 11(1): 770-792.
[6] LENG J, WANG Z X, WANG J X, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion[J]. Chemical Society Reviews, 2019, 48(11): 3015-3072.
[7] PAWINRAT P, MEKASUWANDUMRONG O, PANPRANOT J. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes[J]. Catalysis Communications, 2009, 10(10): 1380-1385.
[8] MOSTOFIZADEH A, LI Y W, SONG B, et al. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials[J]. Journal of Nanomaterials, 2011, 2011: 1-21.
[9] SCHULZ-DOBRICK M, SARATHY K V, JANSEN M. Surfactant-free synthesis and functionalization of gold nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(37): 12816-12817.
[10] NAMDARI P, NEGAHDARI B, EATEMADI A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review[J]. Biomedicine & Pharmacotherapy, 2017, 87: 209-222.
[11] MINAMI K, SONG J W, SHRESTHA L K, et al. Nanoarchitectonics for fullerene biology[J]. Applied Materials Today, 2021, 23: 1-15.
[12] JI J L, ZHOU Z Y, YANG X, et al. One-dimensional nano-interconnection formation[J]. Small, 2013, 9(18): 3014-3029.
[13] VEEMAN D, SHREE M V, SURESHKUMAR P, et al. Sustainable development of carbon nanocomposites: Synthesis and classification for environmental remediation[J]. Journal of Nanomaterials, 2021, 2021: 1-21.
[14] POH T Y, ALI N A T B M, MAC AOGáIN M, et al. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives[J]. Particle and Fibre Toxicology, 2018, 15(1): 1-16.
[15] NOVOSELOV K S. Electric field Effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[16] BAI J W, ZHONG X, JIANG S, et al. Graphene nanomesh[J]. Nature Nanotechnology, 2010, 5(3): 190-194.
[17] BARUA S, SAHU D, SHAHNAZ N, et al. Chemistry of two-dimensional nanomaterials[M]. Two-Dimensional Nanostructures for Biomedical Technology. 2020: 1-33.
[18] SINGH N B, SHUKLA S K. Properties of two-dimensional nanomaterials[M]. Two-Dimensional Nanostructures for Biomedical Technology. 2020: 73-100.
[19] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
[20] CHOI W, CHOUDHARY N, HAN G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 2017, 20(3): 116-130.
[21] ZHANG X, TENG S Y, LOY A C M, et al. Transition metal dichalcogenides for the application of pollution reduction: A review[J]. Nanomaterials (Basel), 2020, 10(6): 1-33.
[22] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.
[23] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
[24] GUO F, HUANG X, CHEN Z, et al. MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight[J]. Journal of Hazardous Materials, 2020, 390: 1-12.
[25] ANSARI S A, CHO M H. Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications[J]. Scientific Reports, 2017, 7: 1-11.
[26] LUO J, FU K, SUN M, et al. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38789-38797.
[27] WU M-H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review[J]. Process Safety and Environmental Protection, 2018, 118: 40-58.
[28] WAN J, DU X, LIU E, et al. Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation[J]. Journal of Catalysis, 2017, 345: 281-294.
[29] WANG X, HONG M, ZHANG F, et al. Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 4055-4062.
[30] ZHU C, ZHANG L, JIANG B, et al. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation[J]. Applied Surface Science, 2016, 377: 99-108.
[31] LU X, WANG Y, ZHANG X, et al. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic[J]. Journal of Hazardous Materials, 2018, 341: 10-19.
[32] LIU C, WANG Q, JIA F, et al. Adsorption of heavy metals on molybdenum disulfide in water: A critical review[J]. Journal of Molecular Liquids, 2019, 292: 1-11.
[33] AI K, RUAN C, SHEN M, et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems[J]. Advanced Functional Materials, 2016, 26(30): 5542-5549.
[34] WANG J, WANG P, WANG H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7165-7174.
[35] WANG J, ZHANG W, YUE X, et al. One-pot synthesis of multifunctional magnetic ferrite–MoS2–carbon dot nanohybrid adsorbent for efficient Pb(II) removal[J]. Journal of Materials Chemistry A, 2016, 4(10): 3893-3900.
[36] WANG Z, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: performance and mechanisms[J]. Environmental Science & Technology, 2018, 52(17): 9741-9748.
[37] WANG Z, ZHANG J, WEN T, et al. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid[J]. Science of The Total Environment, 2020, 699: 1-10.
[38] ACHARI A, S S, ESWARAMOORTHY M. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency[J]. Energy & Environmental Science, 2016, 9(4): 1224-1228.
[39] KRASIAN T, PUNYODOM W, WORAJITTIPHON P. A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly(lactic acid) fibrous mats in oil adsorption and oil/water separation[J]. Chemical Engineering Journal, 2019, 369: 563-575.
[40] LIANG X, WANG P, WANG J, et al. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance[J]. Journal of Membrane Science, 2019, 573: 270-279.
[41] ZHANG P, GONG J-L, ZENG G-M, et al. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure[J]. Journal of Membrane Science, 2019, 574: 112-123.
[42] CHEN D, YING W, GUO Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257.
[43] HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090.
[44] RIES L, PETIT E, MICHEL T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization[J]. Nature Materials, 2019, 18(10): 1112-1137.
[45] WANG Z, TU Q, ZHENG S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298.
[46] GHANEI-MOTLAGH M, TAHER M A. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing[J]. Biosensors & Bioelectronics, 2018, 109: 279-285.
[47] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2[J]. Nano Letters, 2014, 14(10): 5941-5947.
[48] PHAM T, LI G, BEKYAROVA E, et al. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection[J]. ACS Nano, 2019, 13(3): 3196-3205.
[49] SARKAR D, LIU W, XIE X, et al. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8(4): 3992-4003.
[50] SARKAR D, XIE X, KANG J, et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing[J]. Nano Letters, 2015, 15(5): 2852-2862.
[51] HE K, CHEN G, ZENG G, et al. Stability, transport and ecosystem effects of graphene in water and soil environments[J]. Nanoscale, 2017, 9(17): 5370-5388.
[52] ADELEYE A S, HO K T, ZHANG M, et al. Fate and transformation of graphene oxide in estuarine and marine waters[J]. Environmental Science & Technology, 2019, 53(10): 5858-5867.
[53] DU T, ADELEYE A S, KELLER A A, et al. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate[J]. Water Research, 2017, 124: 372-380.
[54] GAO Y, REN X, TAN X, et al. Insights into key factors controlling GO stability in natural surface waters[J]. Journal of Hazardous Materials, 2017, 335: 56-65.
[55] ZHAO J, WANG Z, WHITE J C, et al. Graphene in the aquatic environment: adsorption,,dispersion, toxicity and transformation[J]. Environmental Science & Technology, 2014, 48(17): 9995-10009.
[56] CHOWDHURY I, HOU W C, GOODWIN D, et al. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment[J]. Water Research, 2015, 78: 37-46.
[57] CHOWDHURY I, MANSUKHANI N D, GUINEY L M, et al. Aggregation and stability of reduced graphene oxide: Complex roles of divalent cations, pH, and natural organic matter[J]. Environmental Science & Technology, 2015, 49(18): 10886-10893.
[58] YUAN P, ZHOU Q, HU X. The phases of WS2 nanosheets influence uptake, oxidative stress, lipid peroxidation, membrane damage, and metabolism in algae[J]. Environmental Science & Technology, 2018, 52(22): 13543-13552.
[59] BATLEY G E, KIRBY J K, MCLAUGHLIN M J. Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments[J]. Accounts of Chemical Research, 2013, 46(3): 854-862.
[60] MOON G D, KO S, MIN Y, et al. Chemical transformations of nanostructured materials[J]. Nano Today, 2011, 6(2): 186-203.
[61] MITRANO D M, MOTELLIER S, CLAVAGUERA S, et al. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J]. Environment International, 2015, 77: 132-147.
[62] SANTOSH K C, LONGO R C, WALLACE R M, et al. Surface oxidation energetics and kinetics on MoS2 monolayer[J]. Journal of Applied Physics, 2015, 117(13): 1-10.
[63] ROSS S, SUSSMAN A. Surface oxidation of molybdenum disulfide[J]. Journal of Physical Chemistry, 1955, 59(9): 889-892.
[64] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
[65] WANG Z, VON DEM BUSSCHE A, QIU Y, et al. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media[J]. Environmental Science & Technology, 2016, 50(13): 7208-7217.
[66] ZOU W, ZHOU Q, ZHANG X, et al. Environmental transformations and algal toxicity of single-layer molybdenum disulfide regulated by humic acid[J]. Environmental Science & Technology, 2018, 52(5): 2638-2648.
[67] LEE T W, CHEN C C, CHEN C. Chemical stability and transformation of molybdenum disulfide nanosheets in environmental media[J]. Environmental Science & Technology, 2019, 53(11): 6282-6291.
[68] ZOU W, ZHOU Q, ZHANG X, et al. Dissolved oxygen and visible light irradiation drive the structural alterations and phytotoxicity mitigation of single-layer molybdenum disulfide[J]. Environmental Science & Technology, 2019, 53(13): 7759-7769.
[69] XU L Z, TETREAULT A R, POPE M A. Chemical insights into the rapid, light-induced auto-oxidation of molybdenum disulfide aqueous dispersions[J]. Chemistry of Materials, 2020, 32(1): 148-156.
[70] CHEN Y, ZHANG G, LIU H, et al. Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes[J]. Angewandte Chemie-International Edition, 2019, 58(24): 8134-8138.
[71] ZHOU H, LAI L, WAN Y, et al. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J]. Chemical Engineering Journal, 2020, 384: 1-11.
[72] CHEN Y, ZHANG G, JI Q, et al. Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic Fenton-like reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26781-26788.
[73] 唐兆民, 张景书. 电镀废水的处理现状与发展趋势[J]. 国土与自然资源研究, 2004, (02): 69-71.
[74] 李健, 张惠源, 尔丽珠. 电镀重金属废水治理技术的发展现状(Ⅲ)[J]. 电镀与精饰, 2003, (05): 31-34.
[75] 岑雨秋, 高文皓, 周建人. 电镀废水特征污染物的危害及处理方法研究进展[J]. 电镀与精饰, 2020, 42(09): 31-34.
[76] MIRETZKY P, CIRELLI A F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review[J]. Journal of Hazardous Materials, 2010, 180(1-3): 1-19.
[77] 王浩杰, 高康宁, 崔芙魁. 含铬电镀废水处理工艺研究进展[J]. 资源节约与环保, 2018, (05): 27-27.
[78] 马忠贺, 王竹梅, 贾明. 芬顿处理低浓度络合态镍铬(Cr6+)铜混合电镀废水的小试研究[J]. 当代化工研究, 2018, (11): 26-27.
[79] HEISING J, KANATZIDIS M G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations[J]. Journal of the American Chemical Society, 1999, 121(50): 11720-11732.
[80] WANG Z Y, ZHANG Y J, LIU M C, et al. Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS2 in stable aqueous suspension[J]. Nanoscale, 2017, 9(17): 5398-5403.
[75] HU X G, ZHOU M, ZHOU Q X. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity[J]. Environmental Science & Technology, 2015, 49(6): 3410-3418.
[76] LI L X Y, XU Z L, WIMMER A, et al. New insights into the stability of silver sulfide nanoparticles in surface water: Dissolution through hypochlorite oxidation[J]. Environmental Science & Technology, 2017, 51(14): 7920-7927.
[81] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry[J]. Critical Review in Environmental Science and Technology, 2006, 36(1): 1-84.
[82] WU J Y, CAO P Q, ZHANG Z S, et al. Grain-size-controlled mechanical properties of polycrystalline monolayer MoS2[J]. Nano Letters, 2018, 18(2): 1543-1552.
[83] LEE C, YAN H, BRUS L E, et al. Anomalous lattice vibrations of single- and few-Layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700.
[84] LI X W, LIU X T, LIN C Y, et al. Catalytic oxidation of contaminants by Fe-0 activated peroxymonosulfate process: Fe(IV) involvement, degradation intermediates and toxicity evaluation[J]. Chemical Engineering Journal, 2020, 382: 1-11.
[85] JIN H, TIAN X K, NIE Y L, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2-9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51(21): 12699-12706.
[86] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96.
[87] WANG Y X, XIE Y B, SUN H Q, et al. 2D/2D nano-hybrids of gamma-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2016, 301: 56-64.
[88] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.
[89] GUARDIA L, PAREDES J I, MUNUERA J M, et al. Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21702-21710.
[90] SMITH R J, KING P J, LOTYA M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34): 3944-3955.
[91] CHOU S S, DE M, KIM J, et al. Ligand conjugation of chemically exfoliated MoS2[J]. Journal of the American Chemical Society, 2013, 135(12): 4584-4587.
[92] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62.
[93] SHENG B, YANG F, WANG Y H, et al. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS[J]. Chemical Engineering Journal, 2019, 375: 1-10.
[94] GUAN Y-H, MA J, REN Y-M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438.
[95] CHEN P, GOU Y J, NI J M, et al. Efficient Ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation[J]. Chemical Engineering Journal, 2020, 401: 1-10.
[96] XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 1-24.
[97] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650.
[98] LIU J, DONG C, DENG Y, et al. Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia colis[J]. Water Research, 2018, 145: 312-320.
[99] DOU X N, ZHANG Q, SHAH S N A, et al. MoS2-quantum dot triggered reactive oxygen species generation and depletion: responsible for enhanced chemiluminescence[J]. Chemical Science, 2019, 10(2): 497-500.
[100]ZHENG H L, MA B X, SHI Y S, et al. Tumor microenvironment-triggered MoS2@GA-Fe nanoreactor: A self-rolling enhanced chemodynamic therapy and hydrogen sulfide treatment for hepatocellular carcinoma[J]. Chemical Engineering Journal, 2021, 406: 1-9.
[101]BAI R, YAN W F, XIAO Y, et al. Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine[J]. Chemical Engineering Journal, 2020, 397: 1-11.
[102]ZENG L B, LI S Y, LI X Y, et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study[J]. Chemical Engineering Journal, 2019, 378: 1-11.
[103]ZHAO Y L, WANG H, LI X D, et al. Recovery of CuO/C catalyst from spent anode material in battery to activate peroxymonosulfate for refractory organic contaminants degradation[J]. Journal of Hazardous Materials, 2021, 420: 1-13.
[104]FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524.
[105]SALVATORE E, ERZSéBET TAKáCS. Water remediation by the electron beam treatment[J]. Radiation Chemistry. 2008: 79-95.
[106]MA J, WANG F, MOSTAFAVI M. Ultrafast chemistry of water radical cation, H2O.+, in aqueous solutions[J]. Molecules, 2018, 23(2): 1-15.
[107] CHEN T, ZOU H, WU X, et al. Nanozymatic antioxidant system based on MoS2 nanosheets[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12453-12462.
[108] GHIM D, CHOU P I, CHAE S H, et al. Effects of MoS2 layer thickness on its photochemically driven oxidative dissolution[J]. Environmental Science & Technology, 2021, 55(20): 13759-13769.
[109] GARG S K, TRIPATHI M. Process parameters for decolorization and biodegradation of orange II (Acid Orange 7) in dye-simulated minimal salt medium and subsequent textile effluent treatment by Bacillus cereus (MTCC 9777) RMLAU1[J]. Environmental Monitoring and Assessment, 2013, 185(11): 8909-8923.
[110] OHASHI T, JARA A M T, BATISTA A C L, et al. An improved method for removal of azo dye orange II from textile effluent using albumin as sorbent[J]. Molecules, 2012, 17(12): 14219-14229.
[111] ZHOU Y B, LU J, ZHOU Y, et al. Recent advances for dyes removal using novel adsorbents: A review[J]. Environmental Pollution, 2019, 252: 352-365.
[112] CHEN J F, HU H W, YANG J H, et al. Removal behaviors and mechanisms for series of azo dye wastewater by novel nano constructed macro-architectures material[J]. Bioresource Technology, 2021, 322: 1-8.
[113] LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543.
[114] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O–) in aqueous solution[J]. Journal of Physical Chemical Reference Data, 1988, 17(2): 513-886.
[115] NETA P, GRODKOWSKI J, ROSS A B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution[J]. Journal of Physical Chemical Reference Data, 1996, 25(3): 709-1050.
[116] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
[117] WANG Y B, CAO D, ZHAO X. Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon[J]. Chemical Engineering Journal, 2017, 328: 1112-1121.
[118] VALAVANIDIS A, FIOTAKIS K, BAKEAS E, et al. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter[J]. Redox Report, 2005, 10(1): 37-51.
[119] QI C D, YU G, HUANG J, et al. Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2018, 353: 490-498.
[120] LU A H, ZHONG S J, CHEN J, et al. Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite[J]. Environmental Science & Technology, 2006, 40(9): 3064-3069.
修改评论