中文版 | English
题名

二硫化钼环境稳定性及废水处理应用研究

其他题名
ENVIRONMENTAL STABILITY AND WASTEWATER TREATMENT APPLICATION OF MOLYBDENUM DISULFIDE
姓名
姓名拼音
LI Li
学号
11930302
学位类型
硕士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
王钟颍
导师单位
环境科学与工程学院
论文答辩日期
2022-05-07
论文提交日期
2022-06-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

         二硫化钼(Molybdenum disulfide,MoS2)是一种新兴的二维层状材料,由于具有优异的吸附性能和良好的光催化性能等性质,使其在环境领域内的应用得到广泛关注。然而材料在使用过程中不可避免地会释放到环境中,对生态环境造成潜在的威胁,因此研究 MoS2进入环境体系后的环境行为是十分必要的。本论文从 MoS2纳米材料的环境稳定性展开研究,重点研究 MoS2在自然环境和高级氧化工艺中的稳定性,从而为二硫化钼在环境领域内的应用研究提供一定的理论支持。
        本论文研究了水热合成法制备的 MoS2纳米材料在自然环境中的环境稳定性,通过测定反应过程中 Mo 的释放来定量 MoS2发生氧化溶解的程度;结果表明氧气是 MoS2发生氧化溶解的必备条件,光照和碱性条件可以促进MoS2的氧化溶解,而不同的金属阳离子对 MoS2环境稳定性的影响作用不同,并且 MoS2物相含量分布和形貌等自身的性质也会影响其环境稳定性;然后通过 XPS 分析反应过程中 MoS2物相含量的变化,并通过 SEM 和 TEM观测材料反应前后形貌的变化,发现 MoS2纳米材料在自然环境中自身性质会发生改变。
        本论文也研究了采用化学剥离法制备的 MoS2纳米片层材料在高级氧化处理工艺中的环境稳定性。通过自由基淬灭实验和 EPR 技术表明 MoS2纳米片层材料可以激活过一硫酸盐(PMS)生成硫酸根自由基和羟基自由基;而过量的 MoS2纳米片层材料能够淬灭生成的自由基从而抑制污染物橙黄Ⅱ(Orange Ⅱ,OⅡ)的降解;由于 2H-SL-MoS2的化学稳定性和吸附性更好,使其对自由基的淬灭作用不如 1T-SL-MoS2,从而提出了通过减少激活剂的氧化位点来抑制自由基淬灭作用从而提高污染物降解性能的方案,为激活剂的设计提供了一个方向。该研究发现 MoS2纳米材料在基于 PMS 的高级氧化工艺中不具备环境稳定性的性质。
        考虑到纳米材料在氧化性环境体系中存在环境稳定性问题,而含铬电镀废水也是一个氧化性体系,无法避免 MoS2自身消耗的问题,同时为了节约成本,本论文以 MoS2粉末为研究对象,探究其处理含铬电镀废水的性能。从反应的 pH、温度和 MoS2粉末投加量三个方面优化了反应条件;并建立了处理不同浓度 Cr(Ⅵ)的废水和 MoS2粉末投加量之间的关系;同时研究了MoS2粉末对模拟工业废水的处理性能,表明 MoS2具有同时处理铬铜共存电镀废水的实际应用潜能。

其他摘要

Molybdenum disulfide (MoS2) is an emerging two-dimensional layered material, which has attracted extensive attention in the field of environmental engineering due to its excellent adsorption and photocatalytic properties. However, materials will inevitably be released into the environment during application, causing potential threats to the ecological environment. Therefore, it is necessary to study the environmental behavior of MoS2 after entering the environmental system. In this thesis, the environmental stability of MoS2 nanomaterials in natural environment and advanced oxidation process (AOPs) was studied, providing theoretical basis for the application of MoS2 in the environmental field.

In this thesis, the environmental stability of MoS2 nanomaterials prepared by hydrothermal synthesis method in natural environment was studied. The release of Mo during reactions was measured to quantify the oxidation dissolution extent of MoS2. The results showed that oxygen was a prerequisite for the oxidation dissolution of MoS2, irradiation and alkaline conditions could accelerate the dissolution process, and different metal cations had different effects on the environmental stability of MoS2. Meanwhile the phase content and morphology of MoS2 also affected the environmental stability of MoS2. XPS technology was implemented to analyze the phase alteration of MoS2, and SEM and TEM were recorded to detect the morphology change of the material, demonstrating that the properties of MoS2 nanomaterials would change in natural environment.

The environmental stability of MoS2 nanosheets prepared by chemical exfoliation method in advanced oxidation process was also studied in this thesis. Sulfate radical and hydroxyl radical were detected as the primary reactive oxygen species in the activation reaction system by radical quenching experiments and EPR technology, demonstrating that PMS could be activated by MoS2. However, excessive MoS2 nanosheets could quench radicals and thus inhibit the degradation of orange Ⅱ (OⅡ). More importantly, owing to the better chemical stability and adsorption capability, 2H-SL-MoS2 exhibited weaker quenching effect than 1T-SL-MOS2. The protection of oxidation active sites proved to be a feasible way of suppressing ROS quenching effect to improve the degradation performance, and thus providing a new sight for the activator design. It was found that MoS2 nanomaterials do not possess the property of environmental stability in PMS-AOPs.

Given the matter of nanomaterials’ environmental stability, the problem of consumption of MoS2 nanomaterials in the oxidative system of chromium-containing electroplating wastewater can not be avoided, and treatment costs, this work takes MoS2 powder as the research object to explore its treatment performance to chromium-containing electroplating wastewater. The reaction conditions were optimized from three aspects, including pH, temperature, and MoS2 powder dosage. The relationship between Cr(Ⅵ) concentration in wastewater and MoS2 powder dosage required was established. Furthermore, the treatment performance of MoS2 powder on simulated industrial wastewater was studied, indicating that MoS2 has the practical application potential in the treatment of chromium-copper electroplating wastewater.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] PAN M F, GU Y, YUN Y G, et al. Nanomaterials for electrochemical immunosensing[J]. Sensors, 2017, 17(5): 1041-1064.
[2] YANG J Y, HOU B H, WANG J K, et al. Nanomaterials for the removal of heavy metals from wastewater[J]. Nanomaterials, 2019, 9(3): 424-462.
[3] WANG Z Q, WU S S, WANG J, et al. Carbon nanofiber-based functional nanomaterials for sensor applications[J]. Nanomaterials, 2019, 9(7): 1045-1062.
[4] SU S, KANG P M. Systemic review of biodegradable nanomaterials in nanomedicine[J]. Nanomaterials, 2020, 10(4): 656-676.
[5] LIU J L, HUI D, LAU D. Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications[J]. Nanotechnology Reviews, 2022, 11(1): 770-792.
[6] LENG J, WANG Z X, WANG J X, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion[J]. Chemical Society Reviews, 2019, 48(11): 3015-3072.
[7] PAWINRAT P, MEKASUWANDUMRONG O, PANPRANOT J. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes[J]. Catalysis Communications, 2009, 10(10): 1380-1385.
[8] MOSTOFIZADEH A, LI Y W, SONG B, et al. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials[J]. Journal of Nanomaterials, 2011, 2011: 1-21.
[9] SCHULZ-DOBRICK M, SARATHY K V, JANSEN M. Surfactant-free synthesis and functionalization of gold nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(37): 12816-12817.
[10] NAMDARI P, NEGAHDARI B, EATEMADI A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review[J]. Biomedicine & Pharmacotherapy, 2017, 87: 209-222.
[11] MINAMI K, SONG J W, SHRESTHA L K, et al. Nanoarchitectonics for fullerene biology[J]. Applied Materials Today, 2021, 23: 1-15.
[12] JI J L, ZHOU Z Y, YANG X, et al. One-dimensional nano-interconnection formation[J]. Small, 2013, 9(18): 3014-3029.
[13] VEEMAN D, SHREE M V, SURESHKUMAR P, et al. Sustainable development of carbon nanocomposites: Synthesis and classification for environmental remediation[J]. Journal of Nanomaterials, 2021, 2021: 1-21.
[14] POH T Y, ALI N A T B M, MAC AOGáIN M, et al. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives[J]. Particle and Fibre Toxicology, 2018, 15(1): 1-16.
[15] NOVOSELOV K S. Electric field Effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[16] BAI J W, ZHONG X, JIANG S, et al. Graphene nanomesh[J]. Nature Nanotechnology, 2010, 5(3): 190-194.
[17] BARUA S, SAHU D, SHAHNAZ N, et al. Chemistry of two-dimensional nanomaterials[M]. Two-Dimensional Nanostructures for Biomedical Technology. 2020: 1-33.
[18] SINGH N B, SHUKLA S K. Properties of two-dimensional nanomaterials[M]. Two-Dimensional Nanostructures for Biomedical Technology. 2020: 73-100.
[19] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
[20] CHOI W, CHOUDHARY N, HAN G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 2017, 20(3): 116-130.
[21] ZHANG X, TENG S Y, LOY A C M, et al. Transition metal dichalcogenides for the application of pollution reduction: A review[J]. Nanomaterials (Basel), 2020, 10(6): 1-33.
[22] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.
[23] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
[24] GUO F, HUANG X, CHEN Z, et al. MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight[J]. Journal of Hazardous Materials, 2020, 390: 1-12.
[25] ANSARI S A, CHO M H. Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications[J]. Scientific Reports, 2017, 7: 1-11.
[26] LUO J, FU K, SUN M, et al. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38789-38797.
[27] WU M-H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review[J]. Process Safety and Environmental Protection, 2018, 118: 40-58.
[28] WAN J, DU X, LIU E, et al. Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation[J]. Journal of Catalysis, 2017, 345: 281-294.
[29] WANG X, HONG M, ZHANG F, et al. Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 4055-4062.
[30] ZHU C, ZHANG L, JIANG B, et al. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation[J]. Applied Surface Science, 2016, 377: 99-108.
[31] LU X, WANG Y, ZHANG X, et al. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic[J]. Journal of Hazardous Materials, 2018, 341: 10-19.
[32] LIU C, WANG Q, JIA F, et al. Adsorption of heavy metals on molybdenum disulfide in water: A critical review[J]. Journal of Molecular Liquids, 2019, 292: 1-11.
[33] AI K, RUAN C, SHEN M, et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems[J]. Advanced Functional Materials, 2016, 26(30): 5542-5549.
[34] WANG J, WANG P, WANG H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7165-7174.
[35] WANG J, ZHANG W, YUE X, et al. One-pot synthesis of multifunctional magnetic ferrite–MoS2–carbon dot nanohybrid adsorbent for efficient Pb(II) removal[J]. Journal of Materials Chemistry A, 2016, 4(10): 3893-3900.
[36] WANG Z, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: performance and mechanisms[J]. Environmental Science & Technology, 2018, 52(17): 9741-9748.
[37] WANG Z, ZHANG J, WEN T, et al. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid[J]. Science of The Total Environment, 2020, 699: 1-10.
[38] ACHARI A, S S, ESWARAMOORTHY M. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency[J]. Energy & Environmental Science, 2016, 9(4): 1224-1228.
[39] KRASIAN T, PUNYODOM W, WORAJITTIPHON P. A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly(lactic acid) fibrous mats in oil adsorption and oil/water separation[J]. Chemical Engineering Journal, 2019, 369: 563-575.
[40] LIANG X, WANG P, WANG J, et al. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance[J]. Journal of Membrane Science, 2019, 573: 270-279.
[41] ZHANG P, GONG J-L, ZENG G-M, et al. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure[J]. Journal of Membrane Science, 2019, 574: 112-123.
[42] CHEN D, YING W, GUO Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257.
[43] HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090.
[44] RIES L, PETIT E, MICHEL T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization[J]. Nature Materials, 2019, 18(10): 1112-1137.
[45] WANG Z, TU Q, ZHENG S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298.
[46] GHANEI-MOTLAGH M, TAHER M A. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing[J]. Biosensors & Bioelectronics, 2018, 109: 279-285.
[47] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2[J]. Nano Letters, 2014, 14(10): 5941-5947.
[48] PHAM T, LI G, BEKYAROVA E, et al. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection[J]. ACS Nano, 2019, 13(3): 3196-3205.
[49] SARKAR D, LIU W, XIE X, et al. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8(4): 3992-4003.
[50] SARKAR D, XIE X, KANG J, et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing[J]. Nano Letters, 2015, 15(5): 2852-2862.
[51] HE K, CHEN G, ZENG G, et al. Stability, transport and ecosystem effects of graphene in water and soil environments[J]. Nanoscale, 2017, 9(17): 5370-5388.
[52] ADELEYE A S, HO K T, ZHANG M, et al. Fate and transformation of graphene oxide in estuarine and marine waters[J]. Environmental Science & Technology, 2019, 53(10): 5858-5867.
[53] DU T, ADELEYE A S, KELLER A A, et al. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate[J]. Water Research, 2017, 124: 372-380.
[54] GAO Y, REN X, TAN X, et al. Insights into key factors controlling GO stability in natural surface waters[J]. Journal of Hazardous Materials, 2017, 335: 56-65.
[55] ZHAO J, WANG Z, WHITE J C, et al. Graphene in the aquatic environment: adsorption,,dispersion, toxicity and transformation[J]. Environmental Science & Technology, 2014, 48(17): 9995-10009.
[56] CHOWDHURY I, HOU W C, GOODWIN D, et al. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment[J]. Water Research, 2015, 78: 37-46.
[57] CHOWDHURY I, MANSUKHANI N D, GUINEY L M, et al. Aggregation and stability of reduced graphene oxide: Complex roles of divalent cations, pH, and natural organic matter[J]. Environmental Science & Technology, 2015, 49(18): 10886-10893.
[58] YUAN P, ZHOU Q, HU X. The phases of WS2 nanosheets influence uptake, oxidative stress, lipid peroxidation, membrane damage, and metabolism in algae[J]. Environmental Science & Technology, 2018, 52(22): 13543-13552.
[59] BATLEY G E, KIRBY J K, MCLAUGHLIN M J. Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments[J]. Accounts of Chemical Research, 2013, 46(3): 854-862.
[60] MOON G D, KO S, MIN Y, et al. Chemical transformations of nanostructured materials[J]. Nano Today, 2011, 6(2): 186-203.
[61] MITRANO D M, MOTELLIER S, CLAVAGUERA S, et al. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J]. Environment International, 2015, 77: 132-147.
[62] SANTOSH K C, LONGO R C, WALLACE R M, et al. Surface oxidation energetics and kinetics on MoS2 monolayer[J]. Journal of Applied Physics, 2015, 117(13): 1-10.
[63] ROSS S, SUSSMAN A. Surface oxidation of molybdenum disulfide[J]. Journal of Physical Chemistry, 1955, 59(9): 889-892.
[64] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
[65] WANG Z, VON DEM BUSSCHE A, QIU Y, et al. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media[J]. Environmental Science & Technology, 2016, 50(13): 7208-7217.
[66] ZOU W, ZHOU Q, ZHANG X, et al. Environmental transformations and algal toxicity of single-layer molybdenum disulfide regulated by humic acid[J]. Environmental Science & Technology, 2018, 52(5): 2638-2648.
[67] LEE T W, CHEN C C, CHEN C. Chemical stability and transformation of molybdenum disulfide nanosheets in environmental media[J]. Environmental Science & Technology, 2019, 53(11): 6282-6291.
[68] ZOU W, ZHOU Q, ZHANG X, et al. Dissolved oxygen and visible light irradiation drive the structural alterations and phytotoxicity mitigation of single-layer molybdenum disulfide[J]. Environmental Science & Technology, 2019, 53(13): 7759-7769.
[69] XU L Z, TETREAULT A R, POPE M A. Chemical insights into the rapid, light-induced auto-oxidation of molybdenum disulfide aqueous dispersions[J]. Chemistry of Materials, 2020, 32(1): 148-156.
[70] CHEN Y, ZHANG G, LIU H, et al. Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes[J]. Angewandte Chemie-International Edition, 2019, 58(24): 8134-8138.
[71] ZHOU H, LAI L, WAN Y, et al. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J]. Chemical Engineering Journal, 2020, 384: 1-11.
[72] CHEN Y, ZHANG G, JI Q, et al. Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic Fenton-like reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26781-26788.
[73] 唐兆民, 张景书. 电镀废水的处理现状与发展趋势[J]. 国土与自然资源研究, 2004, (02): 69-71.
[74] 李健, 张惠源, 尔丽珠. 电镀重金属废水治理技术的发展现状(Ⅲ)[J]. 电镀与精饰, 2003, (05): 31-34.
[75] 岑雨秋, 高文皓, 周建人. 电镀废水特征污染物的危害及处理方法研究进展[J]. 电镀与精饰, 2020, 42(09): 31-34.
[76] MIRETZKY P, CIRELLI A F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review[J]. Journal of Hazardous Materials, 2010, 180(1-3): 1-19.
[77] 王浩杰, 高康宁, 崔芙魁. 含铬电镀废水处理工艺研究进展[J]. 资源节约与环保, 2018, (05): 27-27.
[78] 马忠贺, 王竹梅, 贾明. 芬顿处理低浓度络合态镍铬(Cr6+)铜混合电镀废水的小试研究[J]. 当代化工研究, 2018, (11): 26-27.
[79] HEISING J, KANATZIDIS M G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations[J]. Journal of the American Chemical Society, 1999, 121(50): 11720-11732.
[80] WANG Z Y, ZHANG Y J, LIU M C, et al. Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS2 in stable aqueous suspension[J]. Nanoscale, 2017, 9(17): 5398-5403.
[75] HU X G, ZHOU M, ZHOU Q X. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity[J]. Environmental Science & Technology, 2015, 49(6): 3410-3418.
[76] LI L X Y, XU Z L, WIMMER A, et al. New insights into the stability of silver sulfide nanoparticles in surface water: Dissolution through hypochlorite oxidation[J]. Environmental Science & Technology, 2017, 51(14): 7920-7927.
[81] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry[J]. Critical Review in Environmental Science and Technology, 2006, 36(1): 1-84.
[82] WU J Y, CAO P Q, ZHANG Z S, et al. Grain-size-controlled mechanical properties of polycrystalline monolayer MoS2[J]. Nano Letters, 2018, 18(2): 1543-1552.
[83] LEE C, YAN H, BRUS L E, et al. Anomalous lattice vibrations of single- and few-Layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700.
[84] LI X W, LIU X T, LIN C Y, et al. Catalytic oxidation of contaminants by Fe-0 activated peroxymonosulfate process: Fe(IV) involvement, degradation intermediates and toxicity evaluation[J]. Chemical Engineering Journal, 2020, 382: 1-11.
[85] JIN H, TIAN X K, NIE Y L, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2-9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51(21): 12699-12706.
[86] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96.
[87] WANG Y X, XIE Y B, SUN H Q, et al. 2D/2D nano-hybrids of gamma-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2016, 301: 56-64.
[88] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.
[89] GUARDIA L, PAREDES J I, MUNUERA J M, et al. Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21702-21710.
[90] SMITH R J, KING P J, LOTYA M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34): 3944-3955.
[91] CHOU S S, DE M, KIM J, et al. Ligand conjugation of chemically exfoliated MoS2[J]. Journal of the American Chemical Society, 2013, 135(12): 4584-4587.
[92] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62.
[93] SHENG B, YANG F, WANG Y H, et al. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS[J]. Chemical Engineering Journal, 2019, 375: 1-10.
[94] GUAN Y-H, MA J, REN Y-M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438.
[95] CHEN P, GOU Y J, NI J M, et al. Efficient Ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation[J]. Chemical Engineering Journal, 2020, 401: 1-10.
[96] XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 1-24.
[97] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650.
[98] LIU J, DONG C, DENG Y, et al. Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia colis[J]. Water Research, 2018, 145: 312-320.
[99] DOU X N, ZHANG Q, SHAH S N A, et al. MoS2-quantum dot triggered reactive oxygen species generation and depletion: responsible for enhanced chemiluminescence[J]. Chemical Science, 2019, 10(2): 497-500.
[100]ZHENG H L, MA B X, SHI Y S, et al. Tumor microenvironment-triggered MoS2@GA-Fe nanoreactor: A self-rolling enhanced chemodynamic therapy and hydrogen sulfide treatment for hepatocellular carcinoma[J]. Chemical Engineering Journal, 2021, 406: 1-9.
[101]BAI R, YAN W F, XIAO Y, et al. Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine[J]. Chemical Engineering Journal, 2020, 397: 1-11.
[102]ZENG L B, LI S Y, LI X Y, et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study[J]. Chemical Engineering Journal, 2019, 378: 1-11.
[103]ZHAO Y L, WANG H, LI X D, et al. Recovery of CuO/C catalyst from spent anode material in battery to activate peroxymonosulfate for refractory organic contaminants degradation[J]. Journal of Hazardous Materials, 2021, 420: 1-13.
[104]FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524.
[105]SALVATORE E, ERZSéBET TAKáCS. Water remediation by the electron beam treatment[J]. Radiation Chemistry. 2008: 79-95.
[106]MA J, WANG F, MOSTAFAVI M. Ultrafast chemistry of water radical cation, H2O.+, in aqueous solutions[J]. Molecules, 2018, 23(2): 1-15.
[107] CHEN T, ZOU H, WU X, et al. Nanozymatic antioxidant system based on MoS2 nanosheets[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12453-12462.
[108] GHIM D, CHOU P I, CHAE S H, et al. Effects of MoS2 layer thickness on its photochemically driven oxidative dissolution[J]. Environmental Science & Technology, 2021, 55(20): 13759-13769.
[109] GARG S K, TRIPATHI M. Process parameters for decolorization and biodegradation of orange II (Acid Orange 7) in dye-simulated minimal salt medium and subsequent textile effluent treatment by Bacillus cereus (MTCC 9777) RMLAU1[J]. Environmental Monitoring and Assessment, 2013, 185(11): 8909-8923.
[110] OHASHI T, JARA A M T, BATISTA A C L, et al. An improved method for removal of azo dye orange II from textile effluent using albumin as sorbent[J]. Molecules, 2012, 17(12): 14219-14229.
[111] ZHOU Y B, LU J, ZHOU Y, et al. Recent advances for dyes removal using novel adsorbents: A review[J]. Environmental Pollution, 2019, 252: 352-365.
[112] CHEN J F, HU H W, YANG J H, et al. Removal behaviors and mechanisms for series of azo dye wastewater by novel nano constructed macro-architectures material[J]. Bioresource Technology, 2021, 322: 1-8.
[113] LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543.
[114] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O–) in aqueous solution[J]. Journal of Physical Chemical Reference Data, 1988, 17(2): 513-886.
[115] NETA P, GRODKOWSKI J, ROSS A B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution[J]. Journal of Physical Chemical Reference Data, 1996, 25(3): 709-1050.
[116] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
[117] WANG Y B, CAO D, ZHAO X. Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon[J]. Chemical Engineering Journal, 2017, 328: 1112-1121.
[118] VALAVANIDIS A, FIOTAKIS K, BAKEAS E, et al. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter[J]. Redox Report, 2005, 10(1): 37-51.
[119] QI C D, YU G, HUANG J, et al. Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2018, 353: 490-498.
[120] LU A H, ZHONG S J, CHEN J, et al. Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite[J]. Environmental Science & Technology, 2006, 40(9): 3064-3069.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335737
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
李利. 二硫化钼环境稳定性及废水处理应用研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930302-李利-环境科学与工程学(6724KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李利]的文章
百度学术
百度学术中相似的文章
[李利]的文章
必应学术
必应学术中相似的文章
[李利]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。