中文版 | English
题名

基于热压工艺的耐高温聚合物基储能电介质材料研究

其他题名
RESEARCH ON HIGH-TEMPERATURE POLYMER-BASED DIELECTRICS FOR ENERGY STORAGE BASED ON HOT-PRESSING PROCESS
姓名
姓名拼音
LI Shuai
学号
11930241
学位类型
硕士
学位专业
070305 高分子化学与物理
学科门类/专业学位类别
07 理学
导师
汪宏
导师单位
研究生院、党委研究生工作部
论文答辩日期
2022-04-29
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

目前,商业化双轴拉伸聚丙烯(BOPP)薄膜电容器因其室温下超高击穿场强和极低介电损耗,在电磁脉冲系统、混合动力电动汽车、航空航天等领域有着广泛应用。然而当温度超过105 °C后,其性能将会明显恶化,无法满足日益增长的高温高场下对电能存储和转换的需求。本论文从自由体积和库仑阻塞效应两个角度出发,分别设计了以下两个实验来提升聚合物电介质的高温电容性能。

我们通过调控热压参数改变了全有机耐高温聚合物——聚酰亚胺(PI)分子链间的自由体积,并进一步探究了其对材料高温电容性能的影响。研究结果表明,提升热压压强和温度会使PI的自由体积逐渐减少,从而导致其在高温下击穿场强、储能密度和充放电效率的提高。我们还通过离子溅射法结合热压法得到了低体积分数掺杂且纳米填料不连续的聚碳酸酯-金纳米点-聚碳酸酯异质结复合材料。结果表明,由于库仑阻塞效应,金纳米点可在层间界面引入局部深陷阱,在高温和高场下有效地捕获电荷并阻止电荷在聚合物内的传输,从而提高了复合材料在高温下的击穿强度,在获得超高储能密度(6.25 J/cm3)的同时保持了较高的效率(86.6%)。

相比于引入超声分散、表面改性等复杂步骤的高体积分数纳米掺杂聚合物,全有机耐高温聚合物和低体积分数纳米掺杂耐高温复合材料以其简单的制备工艺获得了显著提升的充放电效率和储能密度,因此更满足工业化大规模制备以及高温集成化和小型化的应用需求。

其他摘要

Currently, commercial biaxially oriented polypropylene (BOPP) film capacitors have a wide range of applications in electromagnetic pulse systems, hybrid electric vehicles, and aerospace due to their ultra-high breakdown field strength and extremely low dielectric loss at room temperature. However, when the temperature exceeds 105 °C, the performance deteriorates significantly and can’t meet the increasing demand for electrical energy storage and conversion at high temperatures and high electric fields. In this thesis, the following two experiments are designed to improve the high-temperature capacitive performance of polymer dielectrics from two perspectives: free volume and Coulomb blocked effect, respectively.

We modified the free volume between the molecular chains of the polyimide (PI), the all-organic high-temperature resistant polymer, by regulating the hot-pressing parameters, and further investigated its effect on the high-temperature capacitive performance of the material. The results show that increasing the hot-pressure pressure and hot-pressure temperature leads to a gradual decrease in the free volume of PI, which gives rise to an increase in breakdown strength, energy storage density, and charge-discharged efficiency at high temperatures. We also obtained polycarbonate-gold nanodot-polycarbonate heterojunction composites with low volume fraction doping and discontinuous nanofillers by ion sputtering combined with hot pressing. The results show that the gold nanodots can introduce localized deep traps at the interlayer due to the Coulomb blocked effect, which effectively traps the charge and prevents the charge transport within the polymer at high temperature and high fields, thus improving the breakdown strength of the composites and maintaining a high efficiency (86.6%) while obtaining an ultra-high energy storage density (6.25 J/cm3) at high temperature.

Compared with high volume fraction nano-doped polymers that introduce complex steps such as ultrasonic dispersion and surface modification, the all-organic high-temperature resistant polymers and low volume fraction nano-doped high-temperature resistant composites achieve significantly improved charge-discharged efficiency and energy storage density with simple preparation process, and thus better meet the demands of industrial large-scale preparation as well as high-temperature integration and miniaturization applications.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] FENG QK, ZHONG SL, PEI JY, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2022, 122(3): 3820-3878.
[2] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[3] JACOBSON A J. Materials for solid oxide fuel cells[J]. Chemistry of Materials, 2009, 22(3): 660-674.
[4] BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37(8): 1568-1578.
[5] DU ZZ, CHEN XJ, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985.
[6] LIN DC, LIU YY, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[7] WANG B, RUAN TT, CHEN Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials, 2020, 24: 22-51.
[8] MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, 186: 108199.
[9] PATNAIK S G, SEENATH J J, BOURRIER D, et al. Porous RuOxNySz electrodes for microsupercapacitors and microbatteries with enhanced areal performance[J]. ACS Energy Letters, 2021, 6(1): 131-139.
[10] ZHAN XJ, CHEN Z, ZHANG QC. Recent progress in two-dimensional COFs for energy-related applications[J]. Journal of Materials Chemistry A, 2017, 5(28): 14463-14479.
[11] WANG YG, SONG YF, XIA YY. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
[12] LI H, ZHOU Y, LIU Y, et al. Dielectric polymers for high-temperature capacitive energy storage[J]. Chemical Society Reviews, 2021, 50(11): 6369-6400.
[13] ZHENG J P, JOW T R. High energy and high power density electrochemical capacitors[J]. Journal of Power Sources, 1996, 62: 155-159.
[14] KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage: applications and challenges[J]. Solar Energy Materials and Solar Cells, 2014, 120: 59-80.
[15] CHU BJ, ZHOU X, REN KL, et al. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006, 313(5785): 334-336.
[16] FAN BY, LIU FH, YANG G, et al. Dielectric materials for high-temperature capacitors[J]. IET Nanodielectrics, 2018, 1(1): 32-40.
[17] TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Advanced Functional Materials, 2019, 30(18): 1808567.
[18] LI Q, YAO FZ, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annual Review of Materials Research, 2018, 48(1): 219-243.
[19] LI H, LIU FH, FAN BY, et al. Nanostructured ferroelectric-polymer composites for capacitive energy storage[J]. Small Methods, 2018, 2(6): 1700399.
[20] HO J, JOW T R. High field conduction in biaxially oriented polypropylene at elevated temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 990-995.
[21] REN LL, LI H, XIE ZL, et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers[J]. Advanced Energy Materials, 2021, 11(28): 2101297.
[22] WU C, DESHMUKH A A, LI ZZ, et al. Flexible temperature-invariant polymer dielectrics with large bandgap[J]. Advanced Materials, 2020, 32(21): 2000499.
[23] TAN D, ZHANG LL, CHEN Q, et al. High-temperature capacitor polymer films[J]. Journal of Electronic Materials, 2014, 43(12): 4569-4575.
[24] RABUFFI M, PICCI G. Status quo and future prospects for metallized polypropylene energy storage capacitors[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1939-1942.
[25] ZHOU Y, LI Q, DANG B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Advanced Materials, 2018, 30(49): e1805672.
[26] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.
[27] LI H, REN LL, AI D, et al. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors[J]. InfoMat, 2019, 2(2): 389-400.
[28] TONG H, FU J, AHMAD A, et al. Sulfonyl-containing polyimide dielectrics with advanced heat resistance and dielectric properties for high-temperature capacitor applications[J]. Macromolecular Materials and Engineering, 2019, 304(4): 1800709.
[29] HO J S, GREENBAUM S G. Polymer capacitor dielectrics for high temperature applications[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189-29218.
[30] DIAHAM S, SAYSOUK F, LOCATELLI M L, et al. Huge improvements of electrical conduction and dielectric breakdown in polyimide/BN nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2795-2803.
[31] CHI QG, DONG JF, ZHANG CH, et al. Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss[J]. Journal of Materials Chemistry C, 2016, 4(35): 8179-8188.
[32] WU XD, CHEN X, ZHANG QM, et al. Advanced dielectric polymers for energy storage[J]. Energy Storage Materials, 2022, 44: 29-47.
[33] PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects[J]. Chemical Reviews, 2016, 116(7): 4260-4317.
[34] FENG MJ, FENG Y, ZHANG TD, et al. Recent advances in multilayer-structure dielectrics for energy storage application[J]. Advanced Science, 2021, 8(23): e2102221.
[35] HO J S, GREENBAUM S G. Polymer capacitor dielectrics for high temperature applications[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189-29218.
[36] TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(33): e49379.
[37] WANG YF, CHEN J, LI Y, et al. Multilayered hierarchical polymer composites for high energydensity capacitors[J]. Journal of Materials Chemistry A, 2019, 7(7): 2965-2980.
[38] LIU B, YANG MH, ZHOU WY, et al. High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor[J]. Energy Storage Materials, 2020, 27: 443-452.
[39] MARATI N, GUPTA R G, VAITHILINGAM B. Multilayer ceramic capacitors crisis management in automotive industry[J]. IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy, 2020: 1-6.
[40] NEAGU E, PISSIS P, APEKIS L, et al. Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films[J]. Journal of Physics D: Applied Physics, 1997, 30: 1551–1560.
[41] YANG C, LIN YH, NAN CW. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density[J]. Carbon, 2009, 47(4): 1096-1101.
[42] ISLAM M S, CHANCE W M, ZUR LOYE H C, et al. Dielectric properties and energy storage performance of CCTO/polycarbonate composites: Influence of CCTO synthesis route[J]. Journal of Sol-Gel Science and Technology, 2014, 73(1): 22-31.
[43] LI H, AI D, REN LL, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J]. Advanced Materials, 2019, 31(23): 1900875.
[44] WEN F, ZHANG L, WANG P, et al. A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group[J]. Journal of Materials Chemistry A, 2020, 8(30): 15122-15129.
[45] LI H, GADINSKI M R, HUANG YQ, et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency[J]. Energy & Environmental Science, 2020, 13(4): 1279-1286.
[46] ZHANG QY, CHEN X, ZHANG T, et al. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds[J]. Nano Energy, 2019, 64: 103916.
[47] ZHANG QY, CHEN X, ZHANG B, et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends[J]. Matter, 2021, 4(7): 2448-2459.
[48] LIU G, FENG Y, ZHANG TD, et al. High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution[J]. Journal of Materials Chemistry A, 2021, 9(30): 16384-16394.
[49] LI Q, LIU FH, YANG TN, et al. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures[J]. Proc Natl Acad Sci USA, 2016, 113(36): 9995-10000.
[50] YUAN C, ZHOU Y, ZHU YJ, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nature Communications, 2020, 11(1): 3919.
[51] ZHANG T, CHEN X, ZHANG QY, et al. Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly(ether methyl ether urea)[J]. Applied Physics Letters, 2020, 117(7): 072905.
[52] XING S, PAN ZB, WU XF, et al. Enhancement of thermal stability and energy storage capability of flexible Ag nanodot/polyimide nanocomposite films via in situ synthesis[J]. Journal of Materials Chemistry C, 2020, 8(36): 12607-12614.
[53] REN LL, YANG LJ, ZHANG SY, et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors[J]. Composites Science and Technology, 2021, 201: 108528.
[54] LI H, AI D, REN LL, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J]. Advanced Materials, 2019, 31(23): 1900875.
[55] AI D, LI H, ZHOU Y, et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage[J]. Advanced Energy Materials, 2020, 10(16): 1903881.
[56] LIU FH, LI Q, LI ZY, et al. Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics[J]. Composites Science and Technology, 2017, 142: 139-144.
[57] THAKUR Y, ZHANG T, IACOB C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers[J]. Nanoscale, 2017, 9(31): 10992-10997.
[58] ZHANG T, CHEN X, THAKUR Y, et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature[J]. Science Advances, 2020, 6(4): eaax6622.
[59] THAKUR Y, LEAN M H, ZHANG QM. Reducing conduction losses in high energy density polymer using nanocomposites[J]. Applied Physics Letters, 2017, 110(12): 122905.
[60] CHENG S, ZHOU Y, LI YS, et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage[J]. Energy Storage Materials, 2021, 42: 445-453.
[61] LI ZL, DU BX, HAN CL, et al. Trap modulated charge carrier transport in Polyethylene/Graphene nanocomposites[J]. Scientific Reports, 2017, 7(1): 4015.
[62] GUAN LZ, WENG L, CHEN N, et al. Bimetallic organic framework NiFeMOF driven by tiny Ag particles for PVDF dielectric composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106432.
[63] ZHANG L, YUAN S, CHEN S, et al. Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluoride) composites[J]. Composites Science and Technology, 2015, 110: 126-131.
[64] LI WY, SONG ZQ, ZHONG JM, et al. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance[J]. Journal of Materials Chemistry C, 2019, 7(33): 10371-10378.
[65] HUANG X, ZHANG X, REN GK, et al. Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots[J]. Journal of Materials Chemistry A, 2019, 7(25): 15198-15206.
[66] PAN ZB, XING S, JIANG HT, et al. Highly enhanced discharged energy density of polymer nanocomposites via a novel hybrid structure as fillers[J]. Journal of Materials Chemistry A, 2019, 7(25): 15347-15355.
[67] MARWAT M A, MA W, FAN PY, et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3[J]. Energy Storage Materials, 2020, 31: 492-504.
[68] BAO ZW, HOU CM, SHEN ZH, et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites[J]. Advanced Materials, 2020, 32(25): e1907227.
[69] CHRISTODOULIDES C. Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarisation current[J]. Journal of Physics D: Applied Physics, 1985, 18: 1501-1510.
[70] DONG JF, HU RC, XU XW, et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance[J]. Advanced Functional Materials, 2021, 31(32): 2102644.
[71] 刘金刚,张秀敏,田付强,等. 耐高温聚合物电介质材料的研究与应用进展[J]. 电工技术学报, 2017, 32(16): 14-24.
[72] DIAHAM S, ZELMAT S, LOCATELLI M L, et al. Dielectric breakdown of polyimide films: Area, thickness and temperature dependence[J]. IEEE Transactions on Dielectrics and Electrical Insulation 2009, 17(1): 18-27.
[73] QI LJ, PETERSSON L, LIU TL. Review of recent activities on dielectric films for capacitor applications[J]. Journal of International Council on Electrical Engineering, 2014, 4(1): 1-6.
[74] BARBER P, BALASUBRAMANIAN S, ANGUCHAMY Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage[J]. Materials, 2009, 2(4): 1697-1733.
[75] VENKAT N, DANG T D, BAI ZW, et al. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications[J]. Materials Science and Engineering: B, 2010, 168(1-3): 16-21.
[76] LIAW D J, WANG KL, HUANG YC, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974.
[77] LI ST, WANG WW, YU SH. Influence of hydrostatic pressure on dielectric properties of polyethylene/aluminum oxide nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 519-528.
[78] AKITA T, OKUMURA M, TANAKA K, et al. TEM observation of gold nanoparticles deposited on cerium oxide[J]. Journal of Materials Science, 2005, 40: 3101– 3106.
[79] ZHIDKOV I S, KURMAEV E Z, CHOLAKH S O, et al. XPS study of interactions between linear carbon chains and colloidal Au nanoparticles[J]. Mendeleev Communications, 2020, 30(3): 285-287.
[80] LIU J, SHEN ZH, XU WH, et al. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network[J]. Small, 2020, 16(22): e2000714.
[81] CHI QG, GAO ZY, ZHANG TD, et al. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 748-757.
[82] AZIZI A, GADINSKI M R, LI Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials[J]. Advanced Materials, 2017, 29(35): 1701864.
[83] MIAO WJ, CHEN HX, PAN ZB, et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage[J]. Composites Science and Technology, 2021, 201: 108501.
[84] XU WH, LIU J, CHEN TW, et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature[J]. Small, 2019, 15(28): e1901582.
[85] FAN MZ, HU PH, DAN ZK, et al. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles[J]. Journal of Materials Chemistry A, 2020, 8(46): 24536-24542.
[86] REN WB, PAN JY, DAN ZK, et al. High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles[J]. Chemical Engineering Journal, 2021, 420: 127614.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB33
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335738
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李帅. 基于热压工艺的耐高温聚合物基储能电介质材料研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930241-李帅-材料科学与工程系(7293KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李帅]的文章
百度学术
百度学术中相似的文章
[李帅]的文章
必应学术
必应学术中相似的文章
[李帅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。