[1] FENG QK, ZHONG SL, PEI JY, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2022, 122(3): 3820-3878.
[2] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[3] JACOBSON A J. Materials for solid oxide fuel cells[J]. Chemistry of Materials, 2009, 22(3): 660-674.
[4] BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37(8): 1568-1578.
[5] DU ZZ, CHEN XJ, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985.
[6] LIN DC, LIU YY, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[7] WANG B, RUAN TT, CHEN Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials, 2020, 24: 22-51.
[8] MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, 186: 108199.
[9] PATNAIK S G, SEENATH J J, BOURRIER D, et al. Porous RuOxNySz electrodes for microsupercapacitors and microbatteries with enhanced areal performance[J]. ACS Energy Letters, 2021, 6(1): 131-139.
[10] ZHAN XJ, CHEN Z, ZHANG QC. Recent progress in two-dimensional COFs for energy-related applications[J]. Journal of Materials Chemistry A, 2017, 5(28): 14463-14479.
[11] WANG YG, SONG YF, XIA YY. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
[12] LI H, ZHOU Y, LIU Y, et al. Dielectric polymers for high-temperature capacitive energy storage[J]. Chemical Society Reviews, 2021, 50(11): 6369-6400.
[13] ZHENG J P, JOW T R. High energy and high power density electrochemical capacitors[J]. Journal of Power Sources, 1996, 62: 155-159.
[14] KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage: applications and challenges[J]. Solar Energy Materials and Solar Cells, 2014, 120: 59-80.
[15] CHU BJ, ZHOU X, REN KL, et al. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006, 313(5785): 334-336.
[16] FAN BY, LIU FH, YANG G, et al. Dielectric materials for high-temperature capacitors[J]. IET Nanodielectrics, 2018, 1(1): 32-40.
[17] TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Advanced Functional Materials, 2019, 30(18): 1808567.
[18] LI Q, YAO FZ, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annual Review of Materials Research, 2018, 48(1): 219-243.
[19] LI H, LIU FH, FAN BY, et al. Nanostructured ferroelectric-polymer composites for capacitive energy storage[J]. Small Methods, 2018, 2(6): 1700399.
[20] HO J, JOW T R. High field conduction in biaxially oriented polypropylene at elevated temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 990-995.
[21] REN LL, LI H, XIE ZL, et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers[J]. Advanced Energy Materials, 2021, 11(28): 2101297.
[22] WU C, DESHMUKH A A, LI ZZ, et al. Flexible temperature-invariant polymer dielectrics with large bandgap[J]. Advanced Materials, 2020, 32(21): 2000499.
[23] TAN D, ZHANG LL, CHEN Q, et al. High-temperature capacitor polymer films[J]. Journal of Electronic Materials, 2014, 43(12): 4569-4575.
[24] RABUFFI M, PICCI G. Status quo and future prospects for metallized polypropylene energy storage capacitors[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1939-1942.
[25] ZHOU Y, LI Q, DANG B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Advanced Materials, 2018, 30(49): e1805672.
[26] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.
[27] LI H, REN LL, AI D, et al. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors[J]. InfoMat, 2019, 2(2): 389-400.
[28] TONG H, FU J, AHMAD A, et al. Sulfonyl-containing polyimide dielectrics with advanced heat resistance and dielectric properties for high-temperature capacitor applications[J]. Macromolecular Materials and Engineering, 2019, 304(4): 1800709.
[29] HO J S, GREENBAUM S G. Polymer capacitor dielectrics for high temperature applications[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189-29218.
[30] DIAHAM S, SAYSOUK F, LOCATELLI M L, et al. Huge improvements of electrical conduction and dielectric breakdown in polyimide/BN nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2795-2803.
[31] CHI QG, DONG JF, ZHANG CH, et al. Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss[J]. Journal of Materials Chemistry C, 2016, 4(35): 8179-8188.
[32] WU XD, CHEN X, ZHANG QM, et al. Advanced dielectric polymers for energy storage[J]. Energy Storage Materials, 2022, 44: 29-47.
[33] PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects[J]. Chemical Reviews, 2016, 116(7): 4260-4317.
[34] FENG MJ, FENG Y, ZHANG TD, et al. Recent advances in multilayer-structure dielectrics for energy storage application[J]. Advanced Science, 2021, 8(23): e2102221.
[35] HO J S, GREENBAUM S G. Polymer capacitor dielectrics for high temperature applications[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189-29218.
[36] TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(33): e49379.
[37] WANG YF, CHEN J, LI Y, et al. Multilayered hierarchical polymer composites for high energydensity capacitors[J]. Journal of Materials Chemistry A, 2019, 7(7): 2965-2980.
[38] LIU B, YANG MH, ZHOU WY, et al. High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor[J]. Energy Storage Materials, 2020, 27: 443-452.
[39] MARATI N, GUPTA R G, VAITHILINGAM B. Multilayer ceramic capacitors crisis management in automotive industry[J]. IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy, 2020: 1-6.
[40] NEAGU E, PISSIS P, APEKIS L, et al. Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films[J]. Journal of Physics D: Applied Physics, 1997, 30: 1551–1560.
[41] YANG C, LIN YH, NAN CW. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density[J]. Carbon, 2009, 47(4): 1096-1101.
[42] ISLAM M S, CHANCE W M, ZUR LOYE H C, et al. Dielectric properties and energy storage performance of CCTO/polycarbonate composites: Influence of CCTO synthesis route[J]. Journal of Sol-Gel Science and Technology, 2014, 73(1): 22-31.
[43] LI H, AI D, REN LL, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J]. Advanced Materials, 2019, 31(23): 1900875.
[44] WEN F, ZHANG L, WANG P, et al. A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group[J]. Journal of Materials Chemistry A, 2020, 8(30): 15122-15129.
[45] LI H, GADINSKI M R, HUANG YQ, et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency[J]. Energy & Environmental Science, 2020, 13(4): 1279-1286.
[46] ZHANG QY, CHEN X, ZHANG T, et al. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds[J]. Nano Energy, 2019, 64: 103916.
[47] ZHANG QY, CHEN X, ZHANG B, et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends[J]. Matter, 2021, 4(7): 2448-2459.
[48] LIU G, FENG Y, ZHANG TD, et al. High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution[J]. Journal of Materials Chemistry A, 2021, 9(30): 16384-16394.
[49] LI Q, LIU FH, YANG TN, et al. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures[J]. Proc Natl Acad Sci USA, 2016, 113(36): 9995-10000.
[50] YUAN C, ZHOU Y, ZHU YJ, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nature Communications, 2020, 11(1): 3919.
[51] ZHANG T, CHEN X, ZHANG QY, et al. Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly(ether methyl ether urea)[J]. Applied Physics Letters, 2020, 117(7): 072905.
[52] XING S, PAN ZB, WU XF, et al. Enhancement of thermal stability and energy storage capability of flexible Ag nanodot/polyimide nanocomposite films via in situ synthesis[J]. Journal of Materials Chemistry C, 2020, 8(36): 12607-12614.
[53] REN LL, YANG LJ, ZHANG SY, et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors[J]. Composites Science and Technology, 2021, 201: 108528.
[54] LI H, AI D, REN LL, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J]. Advanced Materials, 2019, 31(23): 1900875.
[55] AI D, LI H, ZHOU Y, et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage[J]. Advanced Energy Materials, 2020, 10(16): 1903881.
[56] LIU FH, LI Q, LI ZY, et al. Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics[J]. Composites Science and Technology, 2017, 142: 139-144.
[57] THAKUR Y, ZHANG T, IACOB C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers[J]. Nanoscale, 2017, 9(31): 10992-10997.
[58] ZHANG T, CHEN X, THAKUR Y, et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature[J]. Science Advances, 2020, 6(4): eaax6622.
[59] THAKUR Y, LEAN M H, ZHANG QM. Reducing conduction losses in high energy density polymer using nanocomposites[J]. Applied Physics Letters, 2017, 110(12): 122905.
[60] CHENG S, ZHOU Y, LI YS, et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage[J]. Energy Storage Materials, 2021, 42: 445-453.
[61] LI ZL, DU BX, HAN CL, et al. Trap modulated charge carrier transport in Polyethylene/Graphene nanocomposites[J]. Scientific Reports, 2017, 7(1): 4015.
[62] GUAN LZ, WENG L, CHEN N, et al. Bimetallic organic framework NiFeMOF driven by tiny Ag particles for PVDF dielectric composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106432.
[63] ZHANG L, YUAN S, CHEN S, et al. Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluoride) composites[J]. Composites Science and Technology, 2015, 110: 126-131.
[64] LI WY, SONG ZQ, ZHONG JM, et al. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance[J]. Journal of Materials Chemistry C, 2019, 7(33): 10371-10378.
[65] HUANG X, ZHANG X, REN GK, et al. Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots[J]. Journal of Materials Chemistry A, 2019, 7(25): 15198-15206.
[66] PAN ZB, XING S, JIANG HT, et al. Highly enhanced discharged energy density of polymer nanocomposites via a novel hybrid structure as fillers[J]. Journal of Materials Chemistry A, 2019, 7(25): 15347-15355.
[67] MARWAT M A, MA W, FAN PY, et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3[J]. Energy Storage Materials, 2020, 31: 492-504.
[68] BAO ZW, HOU CM, SHEN ZH, et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites[J]. Advanced Materials, 2020, 32(25): e1907227.
[69] CHRISTODOULIDES C. Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarisation current[J]. Journal of Physics D: Applied Physics, 1985, 18: 1501-1510.
[70] DONG JF, HU RC, XU XW, et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance[J]. Advanced Functional Materials, 2021, 31(32): 2102644.
[71] 刘金刚,张秀敏,田付强,等. 耐高温聚合物电介质材料的研究与应用进展[J]. 电工技术学报, 2017, 32(16): 14-24.
[72] DIAHAM S, ZELMAT S, LOCATELLI M L, et al. Dielectric breakdown of polyimide films: Area, thickness and temperature dependence[J]. IEEE Transactions on Dielectrics and Electrical Insulation 2009, 17(1): 18-27.
[73] QI LJ, PETERSSON L, LIU TL. Review of recent activities on dielectric films for capacitor applications[J]. Journal of International Council on Electrical Engineering, 2014, 4(1): 1-6.
[74] BARBER P, BALASUBRAMANIAN S, ANGUCHAMY Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage[J]. Materials, 2009, 2(4): 1697-1733.
[75] VENKAT N, DANG T D, BAI ZW, et al. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications[J]. Materials Science and Engineering: B, 2010, 168(1-3): 16-21.
[76] LIAW D J, WANG KL, HUANG YC, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974.
[77] LI ST, WANG WW, YU SH. Influence of hydrostatic pressure on dielectric properties of polyethylene/aluminum oxide nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 519-528.
[78] AKITA T, OKUMURA M, TANAKA K, et al. TEM observation of gold nanoparticles deposited on cerium oxide[J]. Journal of Materials Science, 2005, 40: 3101– 3106.
[79] ZHIDKOV I S, KURMAEV E Z, CHOLAKH S O, et al. XPS study of interactions between linear carbon chains and colloidal Au nanoparticles[J]. Mendeleev Communications, 2020, 30(3): 285-287.
[80] LIU J, SHEN ZH, XU WH, et al. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network[J]. Small, 2020, 16(22): e2000714.
[81] CHI QG, GAO ZY, ZHANG TD, et al. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 748-757.
[82] AZIZI A, GADINSKI M R, LI Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials[J]. Advanced Materials, 2017, 29(35): 1701864.
[83] MIAO WJ, CHEN HX, PAN ZB, et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage[J]. Composites Science and Technology, 2021, 201: 108501.
[84] XU WH, LIU J, CHEN TW, et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature[J]. Small, 2019, 15(28): e1901582.
[85] FAN MZ, HU PH, DAN ZK, et al. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles[J]. Journal of Materials Chemistry A, 2020, 8(46): 24536-24542.
[86] REN WB, PAN JY, DAN ZK, et al. High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles[J]. Chemical Engineering Journal, 2021, 420: 127614.
修改评论