[1] Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration[J]. International Immunology, 2018, 30(11): 511-528.
[2] Porcheray F, Viaud S, Rimaniol A C, et al. Macrophage activation switching: an asset for the resolution of inflammation[J]. Clinical & Experimental Immunology, 2005, 142(3): 481-489.
[3] Martinez F O, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Frontiers in Bioscience, 2008, 13(1): 453-461.
[4] Weissleder R, Nahrendorf M, Pittet M J. Imaging macrophages with nanoparticles[J]. Nature Materials, 2014, 13(2): 125-138.
[5] Ip W K E, Hoshi N, Shouval D S, et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356(6337): 513-519.
[6] Singer N G, Caplan A I. Mesenchymal stem cells: mechanisms of inflammation[J]. Annual Review of Pathology: Mechanisms of Disease, 2011, 6: 457-478.
[7] Saeed M, Xu Z, De Geest B G, et al. Molecular imaging for cancer immunotherapy: seeing is believing[J]. Bioconjugate Chemistry, 2020, 31(2): 404-415.
[8] Ni J S, Li Y, Yue W, et al. Nanoparticle-based cell trackers for biomedical applications[J]. Theranostics, 2020, 10(4): 1923.
[9] Li F, Du Y, Pi G, et al. Long-term real-time tracking live stem cells/cancer cells in vitro/in vivo through highly biocompatible photoluminescent poly (citrate-siloxane) nanoparticles[J]. Materials Science and Engineering: C, 2018, 93: 380-389.
[10] Perrin J, Capitao M, Mougin-Degraef M, et al. Cell tracking in cancer immunotherapy[J]. Frontiers in Medicine, 2020, 7: 34.
[11] Lee H W, Gangadaran P, Kalimuthu S, et al. Advances in molecular imaging strategies for in vivo tracking of immune cells[J]. Biomed Research International, 2016, 2016(5).
[12] van Dongen G A M S, Boellaard R, Vugts D J. In vivo tracking of single cells with PET[J]. Nature Biomedical Engineering, 2020, 4(8): 765-766.
[13] Jeong H J, Yoo R J, Kim J K, et al. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling[J]. Biomaterials, 2019, 199: 32-39.
[14] Liu T, Zhu Y, Zhao R, et al. Visualization of exosomes from mesenchymal stem cells in vivo by magnetic resonance imaging[J]. Magnetic Resonance Imaging, 2020, 68: 75-82.
[15] Li C, Wang Q. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window[J]. ACS Nano, 2018, 12(10): 9654-9659.
[16] Chen Q, Guo H, Jin T, et al. Ultracompact high-resolution photoacoustic microscopy[J]. Optics Letters, 2018, 43(7): 1615-1618.
[17] Qin W, Jin T, Guo H, et al. Large-field-of-view optical resolution photoacoustic microscopy[J]. Optics Express, 2018, 26(4): 4271-4278.
[18] Liu C H, Abrams N D, Carrick D M, et al. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities[J]. The FASEB Journal, 2019, 33(12): 13085-13097.
[19] Gao W, Li X, Liu Z, et al. A redox-responsive self-assembled nanoprobe for photoacoustic inflammation imaging to assess atherosclerotic plaque vulnerability[J]. Analytical Chemistry, 2018, 91(1): 1150-1156.
[20] Yin B, Wang Y, Zhang C, et al. Oxygen-embedded quinoidal acene based semiconducting chromophore nanoprobe for amplified photoacoustic imaging and photothermal therapy[J]. Analytical Chemistry, 2019, 91(23): 15275-15283.
[21] Lyu Y, Pu K. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging[J]. Advanced Science, 2017, 4(6): 1600481.
[22] Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy[J]. Biomaterials, 2018, 155: 217-235.
[23] Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging[J]. Chemical Society Reviews, 2014, 43(18): 6570-6597.
[24] Pu K, Chattopadhyay N, Rao J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging[J]. Journal of Controlled Release, 2016, 240: 312-322.
[25] Cui L, Rao J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9(2): e1418.
[26] Grimm J, Kircher M F, Weissleder R. Cell Tracking: Prinzipien und Anwendungen[J]. Der Radiologe, 2007, 47(1): 25-33.
[27] Pittet M J, Swirski F K, Reynolds F, et al. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles[J]. Nature Protocols, 2006, 1(1): 73-79.
[28] Grimm J, Swirski F K, Pittet M, et al. A nanoparticle-based cell labeling agent for cell tracking with SPECT/CT[J]. Molecular Imaging, 2006, 5(3): 364.
[29] Kircher M F, Gambhir S S, Grimm J. Noninvasive cell-tracking methods[J]. Nature Reviews Clinical Oncology, 2011, 8(11): 677-688.
[30] Krishnan M, Park J M, Cao F, et al. Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging[J]. The FASEB Journal, 2006, 20(1): 106-108.
[31] Hsu Y C. Theory and practice of lineage tracing[J]. Stem Cells, 2015, 33(11): 3197-3204.
[32] Muzumdar M D, Tasic B, Miyamichi K, et al. A global double‐fluorescent Cre reporter mouse[J]. Genesis, 2007, 45(9): 593-605.
[33] McCaffrey A, Kay M A, Contag C H. Advancing molecular therapies through in vivo bioluminescent imaging[J]. Molecular imaging, 2003, 2(2): 15353500200303124.
[34] Lazarova D, Semkova S, Zlateva G, et al. Quantum sensors to track total redox-status and oxidative stress in cells and tissues using electron-paramagnetic resonance, magnetic resonance imaging, and optical imaging[J]. Analytical Chemistry, 2021, 93(5): 2828-2837.
[35] McCarthy C E, White J M, Viola N T, et al. In vivo imaging technologies to monitor the immune system[J]. Frontiers in Immunology, 2020, 11: 1067.
[36] Kiraga Ł, Kucharzewska P, Paisey S, et al. Nuclear imaging for immune cell tracking in vivo–Comparison of various cell labeling methods and their application[J]. Coordination Chemistry Reviews, 2021, 445: 214008.
[37] Grover V P B, Tognarelli J M, Crossey M M E, et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians[J]. Journal of Clinical and Experimental Hepatology, 2015, 5(3): 246-255.
[38] Tosi G, Bondioli L, Ruozi B, et al. NIR-labeled nanoparticles engineered for brain targeting: in vivo optical imaging application and fluorescent microscopy evidences[J]. Journal of Neural Transmission, 2011, 118(1): 145-153.
[39] Sargazi S, Fatima I, Kiani M H, et al. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review[J]. International Journal of Biological Macromolecules, 2022, 206: 115-147.
[40] Desroches J, Jermyn M, Pinto M, et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy[J]. Scientific Reports, 2018, 8(1): 1-10.
[41] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 2017, 1(1): 1-16.
[42] Xu M, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4): 041101.
[43] Beard P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4): 602-631.
[44] Attia A B E, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144.
[45] Lin L, Hu P, Shi J, et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 2018, 9(1): 1-9.
[46] Zhou Y, Yao J, Wang L V. Tutorial on photoacoustic tomography[J]. Journal of Biomedical Optics, 2016, 21(6): 061007.
[47] Lin L, Yao J, Li L, et al. In vivo photoacoustic tomography of myoglobin oxygen saturation[J]. Journal of Biomedical Optics, 2015, 21(6): 061002.
[48] Hong G, Antaris A L, Dai H. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 1-22.
[49] Lu G, Fei B. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 2014, 19(1): 010901.
[50] Qu Y, Li L, Shen Y, et al. Dichroism-sensitive photoacoustic computed tomography[J]. Optica, 2018, 5(4): 495-501.
[51] He S, Song J, Qu J, et al. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics[J]. Chemical Society Reviews, 2018, 47(12): 4258-4278.
[52] Yang X, Stein E W, Ashkenazi S, et al. Nanoparticles for photoacoustic imaging[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1(4): 360-368.
[53] Fehm T F, Deán-Ben X L, Ford S J, et al. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity[J]. Optica, 2016, 3(11): 1153-1159.
[54] 曾志平, 谢文明, 张建英,等. 基于聚焦光声层析技术的甲状腺离体组织成像[J]. 物理学报, 2012, 61(9):6.
[55] 向良忠, 邢达, 郭华,等. 高分辨率快速数字化光声CT乳腺肿瘤成像[J]. 物理学报, 2009(7):8.
[56] 胡军, 邢达, 杨迪武,等. 光声层析成像技术在骨坏死早期诊断中的应用[J]. 生物化学与生物物理进展, 2008, 35(11):6.
[57] Wray P, Lin L, Hu P, et al. Photoacoustic computed tomography of human extremities[J]. Journal of Biomedical Optics, 2019, 24(2): 026003.
[58] Lan B, Liu W, Wang Y, et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics[J]. Biomedical Optics Express, 2018, 9(10): 4689-4701.
[59] Zhang J, Ning L, Zeng Z, et al. Development of second near-infrared photoacoustic imaging agents[J]. Trends in Chemistry, 2021, 3(4): 305-317.
[60] Yin C, Li X, Wang Y, et al. Organic Semiconducting Macromolecular Dyes for NIR-II Photoacoustic Imaging and Photothermal Therapy[J]. Advanced Functional Materials, 2021, 31(37): 2104650.
[61] Chen Y S, Zhao Y, Yoon S J, et al. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window[J]. Nature Nanotechnology, 2019, 14(5): 465-472.
[62] Song L, Jiang Q, Liu J, et al. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance[J]. Nanoscale, 2017, 9(23): 7750-7754.
[63] Wu F, Su H, Cai Y, et al. Porphyrin-implanted carbon nanodots for photoacoustic imaging and in vivo breast cancer ablation[J]. ACS Applied Bio Materials, 2018, 1(1): 110-117.
[64] Filippi M, Garello F, Pasquino C, et al. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation[J]. Journal of Biophotonics, 2019, 12(5): e201800035.
[65] Chen Q, Chen J, He M, et al. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma[J]. Biomaterials Science, 2019, 7(8): 3165-3177.
[66] Zhang P, Li L, Lin L, et al. In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets[J]. Light: Science & Applications, 2019, 8(1): 1-9.
[67] Xia X, He C, Zhang P. Unified Viscous-to-inertial Scaling in Liquid Droplet Coalescence[J]. Physics Fluid Dynamics, 2019, 1906.04970.
[68] Fathi P, Knox H J, Sar D, et al. Biodegradable biliverdin nanoparticles for efficient photoacoustic imaging[J]. ACS Nano, 2019, 13(7): 7690-7704.
[69] Jiang Y, Upputuri P K, Xie C, et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window[J]. Nano Letters, 2017, 17(8): 4964-4969.
[70] Upputuri P K, Yang C, Huang S, et al. Contrast-enhanced photoacoustic imaging in the second near-infrared window using semiconducting polymer nanoparticles[J]. Journal of Biomedical Optics, 2018, 24(3): 031002.
[71] Alles E J, Jaeger M, Bamber J C. Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging[C]//2014 IEEE International Ultrasonics Symposium. IEEE, 2014: 41-44.
[72] Strohm E M, Berndl E S L, Kolios M C. Probing red blood cell morphology using high-frequency photoacoustics[J]. Biophysical Journal, 2013, 105(1): 59-67.
[73] Yao J, Xia J, Wang L V. Multiscale functional and molecular photoacoustic tomography[J]. Ultrasonic Imaging, 2016, 38(1): 44-62.
[74] 蒋文萍, 吴其鑫, 闵军,等. 光声成像技术[J]. 光散射学报, 2020, 32(3):7.
[75] 孙正, 韩朵朵, 王健健. 血管内光声成像图像重建的研究现状[J]. 光电工程, 2015, 42(3):8.
[76] Li K, Qin W, Ding D, et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing[J]. Scientific Reports, 2013, 3(1): 1-10.
修改评论