中文版 | English
题名

多光谱光声示踪策略用于炎症反应中巨噬细胞的大视野实时监测

其他题名
A MULTISPECTRAL PHOTOACOUSTIC TRACKING STRATEGY FOR WIDE-FIELD AND REAL-TIME MONITORING OF MACROPHAGES IN INFLAMMATION
姓名
姓名拼音
LI Zeshun
学号
11930401
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
LI KAI
导师单位
生物医学工程系
论文答辩日期
2022-05-09
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

炎症是血管系统常见的防御反应,其中涉及免疫细胞的招募激活和干细胞归巢。研究这些功能细胞在体内向炎症部位的动态迁移和富集可为疾病诊断和治疗提供相关有效信息,具有重要的意义。然而,现有的光学手段很难实现在大视野下以理想的分辨率示踪和分析这些细胞类群在炎症微环境中的实时状态。

基于这个问题,我们设计并合成了一种近红外吸收的半导体聚合物p-BBT-TQP,并将其包覆为穿膜肽修饰功能化纳米粒子Tat-p-BBT-TQP NPs Tat-BTNPs),以对炎症反应中发挥重要作用的巨噬细胞进行标记与体内光声示踪。Tat-BTNPs的光物理性质表征结果显示其具有近红外二区荧光以及良好的光声特性。体外细胞实验证明了Tat-BTNPs可长时间稳定标记巨噬细胞且不影响其细胞活性,表明Tat-BTNPs具有体内长期示踪的潜力。利用该纳米探针的光声特性,本工作揭示了巨噬细胞、中性粒细胞和间充质干细胞对小鼠炎症部位的趋向行为。借助多光谱光学分辨率光声显微镜(Optical-resolution photoacoustic microscopy, ORPAM),我们可以在大视野范围(直径为9 mm的圆形视野)中以细胞尺度分辨率实时监测炎症部位的光声信号变化,用于判断标记细胞在该部位的动态富集过程,且光声结果的准确性可以通过活体近红外二区和双光子荧光结果进行双重验证。此外,对血管微观结构和标记细胞的高灵敏检测可以揭示各种细胞类型在对炎症部位的时间依赖性富集行为上的相关性。综上,本研究提供了一种有效且具有广阔应用前景的光声示踪策略,以分析趋向病变/受损区域功能细胞的体内行为和命运。

其他摘要

Inflammation is a common defense response of the vascular system and involves the recruitment and activation of immune cells as well as the homing of stem cells. It is of great significance to study the dynamic migration and aggregation of these functional cells to inflammatory sites in vivo, which can provide useful information for diagnosis and treatment. However, existing optical methods are difficult to track and analyze the real-time status of these cell types in the inflammatory microenvironment with ideal resolution in a large field of view. 

Based on this challenge, we designed and synthesized the semiconductor polymer p-BBT-TQP with near infrared absorption and coated it as peptide functionalized nanoparticles Tat-p-BBT-TQP NPs (Tat-BTNPs) to track macrophages, an important cell type in inflammatory response in vivo. The photophysical properties of Tat-BTNPs showed that it had fluorescence in the second near-infrared window (NIR-II) and great photoacoustic properties. In vitro cellular experiments demonstrated that macrophages can be labeled by Tat-BTNPs for a long time with no toxicity, indicating that Tat-BTNPs has the potential of long-term labeling in vivo. This study revealed the targeting behavior of macrophages, neutrophils and mesenchymal stem cells to inflammatory sites in mice, utilizing the photoacoustic properties of Tat-BTNPs. Facilitated by a multispectral optical-resolution photoacoustic microscopy (ORPAM), we can continuously monitor the in vivo photoacoustic signals of labeled cells at inflammatory sites with cellular resolution in a wide field (a circular field with a diameter of 9 mm), to determine the dynamic enrichment process of labeled cells. The accuracy of the obtained photoacoustic results can be verified by in vivo NIR-II and two-photon fluorescence results. In addition, highly sensitive detection of vascular microstructure and labeled cells can reveal correlations between different cell types in time-dependent enrichment behavior toward inflammatory sites. Therefore, our study provides an effective and promising photoacoustic tracking strategy to analyze the in vivo behavior and fate of functional cells targeting diseased or damaged regions.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration[J]. International Immunology, 2018, 30(11): 511-528.
[2] Porcheray F, Viaud S, Rimaniol A C, et al. Macrophage activation switching: an asset for the resolution of inflammation[J]. Clinical & Experimental Immunology, 2005, 142(3): 481-489.
[3] Martinez F O, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Frontiers in Bioscience, 2008, 13(1): 453-461.
[4] Weissleder R, Nahrendorf M, Pittet M J. Imaging macrophages with nanoparticles[J]. Nature Materials, 2014, 13(2): 125-138.
[5] Ip W K E, Hoshi N, Shouval D S, et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356(6337): 513-519.
[6] Singer N G, Caplan A I. Mesenchymal stem cells: mechanisms of inflammation[J]. Annual Review of Pathology: Mechanisms of Disease, 2011, 6: 457-478.
[7] Saeed M, Xu Z, De Geest B G, et al. Molecular imaging for cancer immunotherapy: seeing is believing[J]. Bioconjugate Chemistry, 2020, 31(2): 404-415.
[8] Ni J S, Li Y, Yue W, et al. Nanoparticle-based cell trackers for biomedical applications[J]. Theranostics, 2020, 10(4): 1923.
[9] Li F, Du Y, Pi G, et al. Long-term real-time tracking live stem cells/cancer cells in vitro/in vivo through highly biocompatible photoluminescent poly (citrate-siloxane) nanoparticles[J]. Materials Science and Engineering: C, 2018, 93: 380-389.
[10] Perrin J, Capitao M, Mougin-Degraef M, et al. Cell tracking in cancer immunotherapy[J]. Frontiers in Medicine, 2020, 7: 34.
[11] Lee H W, Gangadaran P, Kalimuthu S, et al. Advances in molecular imaging strategies for in vivo tracking of immune cells[J]. Biomed Research International, 2016, 2016(5).
[12] van Dongen G A M S, Boellaard R, Vugts D J. In vivo tracking of single cells with PET[J]. Nature Biomedical Engineering, 2020, 4(8): 765-766.
[13] Jeong H J, Yoo R J, Kim J K, et al. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling[J]. Biomaterials, 2019, 199: 32-39.
[14] Liu T, Zhu Y, Zhao R, et al. Visualization of exosomes from mesenchymal stem cells in vivo by magnetic resonance imaging[J]. Magnetic Resonance Imaging, 2020, 68: 75-82.
[15] Li C, Wang Q. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window[J]. ACS Nano, 2018, 12(10): 9654-9659.
[16] Chen Q, Guo H, Jin T, et al. Ultracompact high-resolution photoacoustic microscopy[J]. Optics Letters, 2018, 43(7): 1615-1618.
[17] Qin W, Jin T, Guo H, et al. Large-field-of-view optical resolution photoacoustic microscopy[J]. Optics Express, 2018, 26(4): 4271-4278.
[18] Liu C H, Abrams N D, Carrick D M, et al. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities[J]. The FASEB Journal, 2019, 33(12): 13085-13097.
[19] Gao W, Li X, Liu Z, et al. A redox-responsive self-assembled nanoprobe for photoacoustic inflammation imaging to assess atherosclerotic plaque vulnerability[J]. Analytical Chemistry, 2018, 91(1): 1150-1156.
[20] Yin B, Wang Y, Zhang C, et al. Oxygen-embedded quinoidal acene based semiconducting chromophore nanoprobe for amplified photoacoustic imaging and photothermal therapy[J]. Analytical Chemistry, 2019, 91(23): 15275-15283.
[21] Lyu Y, Pu K. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging[J]. Advanced Science, 2017, 4(6): 1600481.
[22] Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy[J]. Biomaterials, 2018, 155: 217-235.
[23] Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging[J]. Chemical Society Reviews, 2014, 43(18): 6570-6597.
[24] Pu K, Chattopadhyay N, Rao J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging[J]. Journal of Controlled Release, 2016, 240: 312-322.
[25] Cui L, Rao J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9(2): e1418.
[26] Grimm J, Kircher M F, Weissleder R. Cell Tracking: Prinzipien und Anwendungen[J]. Der Radiologe, 2007, 47(1): 25-33.
[27] Pittet M J, Swirski F K, Reynolds F, et al. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles[J]. Nature Protocols, 2006, 1(1): 73-79.
[28] Grimm J, Swirski F K, Pittet M, et al. A nanoparticle-based cell labeling agent for cell tracking with SPECT/CT[J]. Molecular Imaging, 2006, 5(3): 364.
[29] Kircher M F, Gambhir S S, Grimm J. Noninvasive cell-tracking methods[J]. Nature Reviews Clinical Oncology, 2011, 8(11): 677-688.
[30] Krishnan M, Park J M, Cao F, et al. Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging[J]. The FASEB Journal, 2006, 20(1): 106-108.
[31] Hsu Y C. Theory and practice of lineage tracing[J]. Stem Cells, 2015, 33(11): 3197-3204.
[32] Muzumdar M D, Tasic B, Miyamichi K, et al. A global double‐fluorescent Cre reporter mouse[J]. Genesis, 2007, 45(9): 593-605.
[33] McCaffrey A, Kay M A, Contag C H. Advancing molecular therapies through in vivo bioluminescent imaging[J]. Molecular imaging, 2003, 2(2): 15353500200303124.
[34] Lazarova D, Semkova S, Zlateva G, et al. Quantum sensors to track total redox-status and oxidative stress in cells and tissues using electron-paramagnetic resonance, magnetic resonance imaging, and optical imaging[J]. Analytical Chemistry, 2021, 93(5): 2828-2837.
[35] McCarthy C E, White J M, Viola N T, et al. In vivo imaging technologies to monitor the immune system[J]. Frontiers in Immunology, 2020, 11: 1067.
[36] Kiraga Ł, Kucharzewska P, Paisey S, et al. Nuclear imaging for immune cell tracking in vivo–Comparison of various cell labeling methods and their application[J]. Coordination Chemistry Reviews, 2021, 445: 214008.
[37] Grover V P B, Tognarelli J M, Crossey M M E, et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians[J]. Journal of Clinical and Experimental Hepatology, 2015, 5(3): 246-255.
[38] Tosi G, Bondioli L, Ruozi B, et al. NIR-labeled nanoparticles engineered for brain targeting: in vivo optical imaging application and fluorescent microscopy evidences[J]. Journal of Neural Transmission, 2011, 118(1): 145-153.
[39] Sargazi S, Fatima I, Kiani M H, et al. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review[J]. International Journal of Biological Macromolecules, 2022, 206: 115-147.
[40] Desroches J, Jermyn M, Pinto M, et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy[J]. Scientific Reports, 2018, 8(1): 1-10.
[41] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 2017, 1(1): 1-16.
[42] Xu M, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4): 041101.
[43] Beard P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4): 602-631.
[44] Attia A B E, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144.
[45] Lin L, Hu P, Shi J, et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 2018, 9(1): 1-9.
[46] Zhou Y, Yao J, Wang L V. Tutorial on photoacoustic tomography[J]. Journal of Biomedical Optics, 2016, 21(6): 061007.
[47] Lin L, Yao J, Li L, et al. In vivo photoacoustic tomography of myoglobin oxygen saturation[J]. Journal of Biomedical Optics, 2015, 21(6): 061002.
[48] Hong G, Antaris A L, Dai H. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 1-22.
[49] Lu G, Fei B. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 2014, 19(1): 010901.
[50] Qu Y, Li L, Shen Y, et al. Dichroism-sensitive photoacoustic computed tomography[J]. Optica, 2018, 5(4): 495-501.
[51] He S, Song J, Qu J, et al. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics[J]. Chemical Society Reviews, 2018, 47(12): 4258-4278.
[52] Yang X, Stein E W, Ashkenazi S, et al. Nanoparticles for photoacoustic imaging[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1(4): 360-368.
[53] Fehm T F, Deán-Ben X L, Ford S J, et al. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity[J]. Optica, 2016, 3(11): 1153-1159.
[54] 曾志平, 谢文明, 张建英,等. 基于聚焦光声层析技术的甲状腺离体组织成像[J]. 物理学报, 2012, 61(9):6.
[55] 向良忠, 邢达, 郭华,等. 高分辨率快速数字化光声CT乳腺肿瘤成像[J]. 物理学报, 2009(7):8.
[56] 胡军, 邢达, 杨迪武,等. 光声层析成像技术在骨坏死早期诊断中的应用[J]. 生物化学与生物物理进展, 2008, 35(11):6.
[57] Wray P, Lin L, Hu P, et al. Photoacoustic computed tomography of human extremities[J]. Journal of Biomedical Optics, 2019, 24(2): 026003.
[58] Lan B, Liu W, Wang Y, et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics[J]. Biomedical Optics Express, 2018, 9(10): 4689-4701.
[59] Zhang J, Ning L, Zeng Z, et al. Development of second near-infrared photoacoustic imaging agents[J]. Trends in Chemistry, 2021, 3(4): 305-317.
[60] Yin C, Li X, Wang Y, et al. Organic Semiconducting Macromolecular Dyes for NIR-II Photoacoustic Imaging and Photothermal Therapy[J]. Advanced Functional Materials, 2021, 31(37): 2104650.
[61] Chen Y S, Zhao Y, Yoon S J, et al. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window[J]. Nature Nanotechnology, 2019, 14(5): 465-472.
[62] Song L, Jiang Q, Liu J, et al. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance[J]. Nanoscale, 2017, 9(23): 7750-7754.
[63] Wu F, Su H, Cai Y, et al. Porphyrin-implanted carbon nanodots for photoacoustic imaging and in vivo breast cancer ablation[J]. ACS Applied Bio Materials, 2018, 1(1): 110-117.
[64] Filippi M, Garello F, Pasquino C, et al. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation[J]. Journal of Biophotonics, 2019, 12(5): e201800035.
[65] Chen Q, Chen J, He M, et al. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma[J]. Biomaterials Science, 2019, 7(8): 3165-3177.
[66] Zhang P, Li L, Lin L, et al. In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets[J]. Light: Science & Applications, 2019, 8(1): 1-9.
[67] Xia X, He C, Zhang P. Unified Viscous-to-inertial Scaling in Liquid Droplet Coalescence[J]. Physics Fluid Dynamics, 2019, 1906.04970.
[68] Fathi P, Knox H J, Sar D, et al. Biodegradable biliverdin nanoparticles for efficient photoacoustic imaging[J]. ACS Nano, 2019, 13(7): 7690-7704.
[69] Jiang Y, Upputuri P K, Xie C, et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window[J]. Nano Letters, 2017, 17(8): 4964-4969.
[70] Upputuri P K, Yang C, Huang S, et al. Contrast-enhanced photoacoustic imaging in the second near-infrared window using semiconducting polymer nanoparticles[J]. Journal of Biomedical Optics, 2018, 24(3): 031002.
[71] Alles E J, Jaeger M, Bamber J C. Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging[C]//2014 IEEE International Ultrasonics Symposium. IEEE, 2014: 41-44.
[72] Strohm E M, Berndl E S L, Kolios M C. Probing red blood cell morphology using high-frequency photoacoustics[J]. Biophysical Journal, 2013, 105(1): 59-67.
[73] Yao J, Xia J, Wang L V. Multiscale functional and molecular photoacoustic tomography[J]. Ultrasonic Imaging, 2016, 38(1): 44-62.
[74] 蒋文萍, 吴其鑫, 闵军,等. 光声成像技术[J]. 光散射学报, 2020, 32(3):7.
[75] 孙正, 韩朵朵, 王健健. 血管内光声成像图像重建的研究现状[J]. 光电工程, 2015, 42(3):8.
[76] Li K, Qin W, Ding D, et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing[J]. Scientific Reports, 2013, 3(1): 1-10.

所在学位评定分委会
生物系
国内图书分类号
R318
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335739
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
李泽顺. 多光谱光声示踪策略用于炎症反应中巨噬细胞的大视野实时监测[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930401-李泽顺-生物医学工程系(3873KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李泽顺]的文章
百度学术
百度学术中相似的文章
[李泽顺]的文章
必应学术
必应学术中相似的文章
[李泽顺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。