中文版 | English
题名

膜电极参数对质子交换膜燃料电池反极的影响规律研究

其他题名
EFFECT OF PARAMETERS OF MEMBRANE-ELECTRODE-ASSEMBLY ON THE CELL REVERSAL BEHAVIOR FOR PROTON EXCHANGE MEMBRANE FUEL CELL
姓名
姓名拼音
LOU Jialu
学号
12032451
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
曾林
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着对质子交换膜燃料电池稳定性的不断研究,结果表明燃料电池在快速启停以及快速变载工况下,燃料电池中的某些单电池会出现电极极性反转现象,导致膜电极性能衰退甚至烧毁。因此,研究燃料电池膜电极反极的现象、机理和预防对策对提高燃料电池稳定性具有重要意义。

本课题研究方向主要从调控质子交换膜燃料电池中膜电极的参数出发,通过控制在阳极通入惰性气体以模拟单电池的反极,对燃料电池反极前后的催化剂层微观形貌、理化性能进行对比分析,以及利用多种电化学诊断测试方法对燃料电池的电化学性能进行对比与分析,由此得到了膜电极抗反极时间与膜电极参数之间的规律,研究工作总结如下:

1)在制备催化剂浆料时阳极添加不同载量的IrO2,探究IrO2载量对膜电极抗反极性能的影响规律。实验表明,膜电极的反极时间随着IrO2载量的增加而增加,且两者成正比关系。这主要是IrO2的加入,提高了阳极电解水析氧反应的发生,抑制了阳极催化层碳载体的腐蚀,从而有效提高了抗反极时间。

2)通过改变阳极气体湿度测试膜电极在不同湿度条件下的抗反极性能,测试不同相对湿度对膜电极抗反极性能的影响规律。实验表明,在相对湿度为60 %左右时,膜电极的反极时间达到最大,在低相对湿度时,反极时间随着相对湿度的增大而增加;在高相对湿度时,反极时间随着相对湿度的增大而减少。分析表明,这主要跟催化层水含量和水的活度有关。低湿度条件下,阳极催化层由于缺水,在反极条件下容易发生碳载体腐蚀,导致阳极催化层破坏严重,膜电极很短时间就失效。相反,在高湿度条件下,阳极催化层处于水过量状态,部分水不吸附于IrO2表面,处于失活状态,也会造成电解水析氧反应受阻,阳极催化层发生碳载体腐蚀,导致膜电极很短时间失效。

3)将不同的分子当量值树脂溶液加入催化剂浆料制成膜电极,测试不同当量值树脂添加剂对膜电极抗反极性能的影响规律。实验表明,当树脂EW790 g/mol增加到909 g/mol,膜电极抗反极时间逐渐减少,当树脂EW进一步增加到1100 g/mol,膜电极抗反极时间反而逐渐增加。通过后续理化表征可知,改变催化层树脂分子当量值,可以显著改变催化层三相界面的亲疏水性质,影响到反极发生时析氧反应和碳载体氧化反应两个竞争反应的速率。

其他摘要

With the development of critical components of proton exchange membrane fuel cells (PEMFCs), the performance has been significantly improved in the last decades. While the degradation of PEMFCs has become a significant obstacle for the further commercialization of PEMFCs. As a key component of PEMFCs, the degradation of membrane-electrode-assembly (MEA) has been considered as one of the main degradations for PEMFCs. Among various degradation ways, cell reversal happened during the start/stop and rapid load changes, has been widely studied as one of the main factors that cause the degradation of MEA. Therefore, it is of great significance to study the phenomenon, mechanism and preventive strategy to address the cell reversal issue.

The topic of this thesis mainly starts from the analysis of the key parameters of MEAs. By controlling the inert gas to be passed into the anode to simulate the voltage reversal of the single cell, the microscopic morphology, physical and chemical properties of the catalyst layer before and after the voltage reversal are comprehensively analyzed. Then, the electrochemical performance MEAs is evaluated by using a variety of electrochemical diagnosis methods. The effect of key parameters of MEAs on the cell reversal behavior is then analyzed. The research results are summarized as follows:

(1) Different loadings of IrO2 are added to the anode catalyst layers during the preparation of the catalyst ink to explore the effect of the IrO2 loading on the anti-reversal performance for MEAs. Experimental results show that the voltage reversal time of the MEAs almost linearly increases with the increase of IrO2 loading. This is mainly due to the addition of IrO2 nanoparticles improve the kinetics of the oxygen evolution reaction at the anode catalyst layers, which inhibits the corrosion of the carbon supporting materials Pt/C catalyst.

(2) The anti-reversal performance of the MEAs under different humidity conditions is tested by regulating the anode gas humidities, and the influence of different relative humidity on the anti-reversal performance of the MEAs is analyzed. Experiment results show that when the relative humidity is about 60%, the voltage reversal time of the MEAs is longest among different relative humidities. Meanwhile, the relative humidity is low, the voltage reversal time increases with an increase in the relative humidity; when the relative humidity is high, the voltage reversal time decreases with the increase of the relative humidity. After the physicochemical characterization and electrochemical diagnosis analysis, the reason for this behavior is mainly related to the water content and activity in the catalytic layer. Under low humidity conditions, the anode catalyst layer is prone to carbon corrosion due to the lack of water under the conditions of voltage reversal, thereby leading to a severe damage to the anode catalyst layer and failure of the MEAs in a short period. On the contrary, under high humidity conditions, the anode catalyst layer is in a state of excess water, and part of the water is not adsorbed on the surface of IrO2 nanoparticles, which will also hinder the oxygen evolution reaction to continuously generate the protons and electrons, and the carbon supporting materials of anode catalyst layer will be oxidation, which will also cause the failure of MEAs in a short period.

(3) The proton resins with different equivalent weights (EW) are then used as the ionomer in the anode catalyst layer. The effect of EW values on the voltage reversal behavior is comprehensively analyzed. Experimental results show that when the EW of ionomer increases from 790 g/mol to 909 g/mol, the voltage reversal time of the MEAs gradually decreases, while when the EW of ionomer further increases to 1100 g/mol, the voltage reversal time of the membrane electrode gradually increases. Through the subsequent the physicochemical characterization and electrochemical diagnosis analysis, it can be seen that the EW can significantly influents the hydrophilic and hydrophobic properties of the three-phase interface of the anode catalyst layer and affect the rate of the two competing reactions between the oxygen evolution reaction and the carbon oxidation reaction during the course of the voltage reversal.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] SAVADOGO O. Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications[J]. Journal of Power Sources, 2004, 127(1/2): 135-161.
[2] MANDAL P, HONG B K, OH J-G, et al. Understanding the voltage reversal behavior of automotive fuel cells[J]. Journal of Power Sources, 2018, 397(4): 397-404.
[3] 衣宝廉.燃料电池-原理、技术、应用[J].化学工业出版社, 2003(2): 117-121.
[4] 侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学, 2012, 18(1): 13-19.
[5] 白文亭.新能源技术[J].电气时代, 2017(06): 33-36.
[6] BARBIR F, BOSTON A, LONDON H, et al. PEM Fuel Cells : Theory and Practice[J]. Elsevier Academic Press, 2005(4): 57-62.
[7] DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature. 2012, 58(3): 25-27.
[8] 郝德利,韩立明,薛金生,等.质子交换膜燃料电池技术进展[J].电源技术, 2001, 25(6): 5-11.
[9] 李国超,简弃非,孙绍云.质子交换膜燃料电池在军事中的应用前景[J].兵工学报, 2007, 28(4): 487-490.
[10] GAMBURZEV S, APPLEBY A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources, 2002, 107(1): 55-63.
[11] 陈维荣,钱清泉,李奇.燃料电池混合动力列车的研究现状与发展趋势[J].西南交通大学学报, 2009, 44(1): 6-13.
[12] CULLEN D A, NEYERLIN K C, AHLUWALIA R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nature Energy. 2021(6): 462-474.
[13] STEELE B, HEINZEL A. Materials For Fuel-Cell Technologies[J]. Nature, 2001, 414(6861): 345-352.
[14] 黄倬.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社, 2000:32-37.
[15] Recent advances in perfluorinated ionomer membranes: structure, properties and applications[J]. Journal of Membrane Science, 1996(5): 157-164.
[16] 徐洪峰,林治银,邱艳玲,等.用于质子交换膜燃料电池的碳载铂电催化剂[J].催化学报, 2003, 24(2): 6-12.
[17] JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature. 2021(595): 361-369.
[18] PARK G G, SOHN Y J, YANG T H, et al. Effect of PTFE contents in the gas diffusion media on the performance of PEMFC[J]. Journal of Power Sources, 2004, 131(1/2): 182-187.
[19] PASSALACQUA E, SQUADRITO G, LUFRANO F, et al. Effects of the Diffusion Layer Characteristics on the Performance of Polymer Electrolyte Fuel Cell Electrodes[J]. Journal of Applied Electrochemistry, 2001, 31(4): 449-454.
[20] STOLTEN D, EMONTS B. Fuel Cell Science and Engineering (Materials, Processes, Systems and Technology) || Degradation Caused by Dynamic Operation and Starvation Conditions[J], 2012, 10(7): 543-570.
[21] ATANASOSKI R T, ATANASOSKA L L, CULLEN D A. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance[J]. Springer London, 2013(15): 637-663.
[22] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1/2): 42-49.
[23] SEBASTIÁN D, BAGLIO V. Catalysis for Low-Temperature Fuel Cells[J]. Catalysts, 2017, 7(12): 370-381.
[24] ZHOU F, ANDREASEN S J, KOER S K, et al. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2833-2839.
[25] MAILLARD F, BONNEFONT A, MICOUD F. An EC-FTIR study on the catalytic role of Pt in carbon corrosion[J]. Electrochemistry Communications, 2011, 13(10): 1109-1111.
[26] MANDAL P, HONG B K, OH J G, et al. 3D Imaging of Fuel Cell Electrode Structure Degraded under Cell Voltage Reversal Conditions Using Nanoscale X-Ray Computed Tomography[J]. Ecs Transactions, 2015, 69(17): 443-453.
[27] 黄豪.质子交换膜燃料电池膜电极耐久性研究[D].华东理工大学, 2018: 157-164.
[28] 华周发.质子交换膜燃料电池反极现象研究[D].武汉理工大学, 2006: 57-62.
[29] CHEN H, ZHAO X, ZHANG T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review[J]. Energy Conversion and Management, 2019, 182: 282-298.
[30] ZHANG T, WANG P, CHEN H, et al. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition[J]. Applied Energy, 2018, 223: 249-262.
[31] FEI, JIA, LIEJIN, et al. Dynamic characteristics and mitigations of hydrogen starvations in proton exchange membrane fuel cells during start-ups[J]. International Journal of Hydrogen Energy, 2014,24(39): 12835-12841.
[32] DILLET J, SPERNJAK D, LAMIBRAC A, et al. Impact of flow rates and electrode specifications on degradations during repeated startups and shutdowns in polymer-electrolyte membrane fuel cells[J]. Journal of Power Sources, 2014, 250(15): 68-79.
[33] IOROI T, YASUDA K. Highly reversal-tolerant anodes using Ti4O7-supported platinum with a very small amount of water-splitting catalyst[J]. Journal of Power Sources, 2020: 450-459.
[34] WON J-E, KWAK D-H, HAN S-B, et al. PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions[J]. Journal of Catalysis, 2018, 358: 287-294.
[35] JUNG D W, PARK S, KIM S H, et al. Durability of Polymer Electrolyte Membrane Fuel Cell with Pt/CNTs Catalysts in Cell Reversal Conditions by Hydrogen Starvation[J]. Fuel Cells, 2011, 11(6): 866-874.
[36] ROH C-W, KIM H-E, CHOI J, et al. Monodisperse IrOx deposited on Pt/C for reversal tolerant anode in proton exchange membrane fuel cell[J]. Journal of Power Sources, 2019: 443-456.
[37] ZHOU X, JI H, LI B, et al. High-Repetitive Reversal Tolerant Performance of Proton-Exchange Membrane Fuel Cell by Designing a Suitable Anode[J]. ACS Omega, 2020, 5(17): 10099-10105.
[38] WANG J, ZHOU X, LI B, et al. Highly efficient, cell reversal resistant PEMFC based on PtNi/C octahedral and OER composite catalyst[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8930-8940.
[39] CAI C, WAN Z, RAO Y, et al. Water electrolysis plateau in voltage reversal process for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2020: 455-467.
[40] OH J G, LEE W H, KIM H. The inhibition of electrochemical carbon corrosion in polymer electrolyte membrane fuel cells using iridium nanodendrites[J]. Fuel and Energy Abstracts, 2012, 37(3): 2455-2461.
[41] LABI T, SCHALKWYK F V, SHUANG M A, et al. Increasing fuel cell durability during prolonged and intermittent fuel starvation using supported IrOx[J]. Journal of Power Sources, 2021, 490: 229-246.
[42] TODOKORO H. Scanning electron microscope: US05939720A [P], 1999-08-17.
[43] KANDA K. Energy dispersive X-ray spectrometer: US05065020A[P], 1991-11-12.
[44] 王刚.燃料电池膜电极制备方法及性能研究[D].南京大学, 2016: 117-122.
[45] GINER-SANZ J J, ORTEGA E M, PEREZ-HERRANZ V. Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13206-13216.
[46] 杨长幸.质子交换膜燃料电池的活化及阳极抗CO催化层的结构设计和优化研究[D].上海交通大学, 2012: 257-262.
[47] CAROTHERS W H, ADAMS R. Platinum oxide as a catalyst in the reduction of organic compounds. II. Reduction of aldehydes. Activation of the catalyst by the salts of certain metals[J]. Journal of the American Chemical Society, 1923, 45(4): 1071-1086.

所在学位评定分委会
机械与能源工程系
国内图书分类号
O646
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335740
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
娄佳璐. 膜电极参数对质子交换膜燃料电池反极的影响规律研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032451-娄佳璐-机械与能源工程(6514KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[娄佳璐]的文章
百度学术
百度学术中相似的文章
[娄佳璐]的文章
必应学术
必应学术中相似的文章
[娄佳璐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。