[1] KASPRZYK J R, REED P M, KIRSCH B R, et al. Managing population and drought risks using many-objective water portfolio planning under uncertainty[J]. Water Resources Research, 2009, 45: W12401.
[2] FLEMING P J, PURSHOUSE R C, LYGOE R J. Many-objective optimization: An engineering design perspective[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2005: 14-32.
[3] KRUISSELBRINK J W, EMMERICH M T, BÄCK T, et al. Combining aggregation with pareto optimization: A case study in evolutionary molecular design[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2009: 453-467.
[4] LACOMME P, PRINS C, SEVAUX M. A genetic algorithm for a bi-objective capacitated arc routing problem[J]. Computers & Operations Research, 2006, 33(12): 3473-3493.
[5] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering [J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
[6] FLEMING P J, PURSHOUSE R C. Evolutionary algorithms in control systems engineering: A survey[J]. Control Engineering Practice, 2002, 10(11): 1223-1241.
[7] COELLO C A C, LAMONT G B, VAN VELDHUIZEN D A, et al. Evolutionary algorithms for solving multi-objective problems: volume 5[M]. Springer, 2007.
[8] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[9] ZITZLER E, LAUMANNS M, THIELE L. Spea2: Improving the strength pareto evolutionary algorithm[J]. TIK-report, 2001, 103.
[10] CORNE D W, JERRAM N R, KNOWLES J D, et al. Pesa-ii: Region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. 2001: 283-290.
[11] SÜLFLOW A, DRECHSLER N, DRECHSLER R. Robust multi-objective optimization in high dimensional spaces[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2007: 715-726.
[12] MIETTINEN K. Nonlinear multiobjective optimization: volume 12[M]. Springer Science & Business Media, 2012.
[13] DEB K. Multi-objective optimisation using evolutionary algorithms: an introduction[M]// Multi-objective evolutionary optimisation for product design and manufacturing. Springer, 2011: 3-34.
[14] LI M Q, YAO X. Quality evaluation of solution sets in multiobjective optimisation: A survey [J]. ACM Computing Surveys, 2019, 52(2): 1-38.
[15] LI B D, LI J L, TANG K, et al. Many-objective evolutionary algorithms: A survey[J]. ACM Computing Surveys, 2015, 48(1): 1-35.
[16] PRADITWONG K, YAO X. How well do multi-objective evolutionary algorithms scale to large problems[C]//2007 IEEE Congress on Evolutionary Computation. IEEE, 2007: 3959-3966.
[17] KHARE V, YAO X, DEB K. Performance scaling of multi-objective evolutionary algorithms[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2003: 376-390.
[18] SHANG K, ISHIBUCHI H, HE L J, et al. A survey on the hypervolume indicator in evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 1-20.
[19] WAGNER T, BEUME N, NAUJOKS B. Pareto-, aggregation-, and indicator-based methods in many-objective optimization[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2007: 742-756.
[20] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (5): 477-506.
[21] IKEDA K, KITA H, KOBAYASHI S. Failure of pareto-based moeas: Does non-dominated really mean near to optimal?[C]//Proceedings of the 2001 Congress on Evolutionary Computation: volume 2. IEEE, 2001: 957-962.
[22] KNOWLES J, CORNE D. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2007: 757-771.
[23] BRANKE J, KAUSSLER T, SCHMECK H. Guidance in evolutionary multi-objective optimization[J]. Advances in Engineering Software, 2001, 32(6): 499-507.
[24] FARINA M, AMATO P. A fuzzy definition of” optimality” for many-criteria optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2004, 34(3): 315-326.
[25] DI PIERRO F, KHU S T, SAVIC D A. An investigation on preference order ranking scheme for multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 17-45.
[26] AGUIRRE H, TANAKA K. Space partitioning with adaptive 𝜀-ranking and substitute distance assignments: A comparative study on many-objective mnk-landscapes[C]//Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. 2009: 547-554.
[27] LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
[28] KÖPPEN M, YOSHIDA K. Substitute distance assignments in nsga-ii for handling manyobjective optimization problems[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2007: 727-741.
[29] LI M Q, ZHENG J H, LI K, et al. Enhancing diversity for average ranking method in evolutionary many-objective optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2010: 647-656.
[30] KUKKONEN S, LAMPINEN J. Ranking-dominance and many-objective optimization[C]// 2007 IEEE Congress on Evolutionary Computation. IEEE, 2007: 3983-3990.
[31] MANEERATANA K, BOONLONG K, CHAIYARATANA N. Compressed-objective genetic algorithm[M]//Parallel Problem Solving from Nature-PPSN IX. Springer, 2006: 473-482.
[32] GARZA-FABRE M, TOSCANO-PULIDO G, COELLO C A C. Two novel approaches for many-objective optimization[C]//IEEE Congress on Evolutionary Computation. IEEE, 2010: 1-8.
[33] MOSTAGHIM S, SCHMECK H. Distance based ranking in many-objective particle swarm optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2008: 753-762.
[34] CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (5): 773-791.
[35] ZHANG Q F, LI H. Moea/d: A multiobjective evolutionary algorithm based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[36] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-pointbased nondominated sorting approach, part i: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
[37] TIAN Y, CHENG R, ZHANG X Y, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4): 609-622.
[38] WHILE L, HINGSTON P, BARONE L, et al. A faster algorithm for calculating hypervolume [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29-38.
[39] BROCKHOFF D, WAGNER T, TRAUTMANN H. On the properties of the r2 indicator[C]// Proceedings of the 14th annual Conference on Genetic and Evolutionary Computation. 2012: 465-472.
[40] SHANG K, ISHIBUCHI H, NI X. R2-based hypervolume contribution approximation[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 185-192.
[41] TIAN Y, ZHANG X Y, CHENG R, et al. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric[C]//2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016: 5222-5229.
[42] ZITZLER E, KÜNZLI S. Indicator-based selection in multiobjective search[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2004: 832-842.
[43] HERNÁNDEZ GÓMEZ R, COELLO COELLO C A. Improved metaheuristic based on the r2 indicator for many-objective optimization[C]//Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. 2015: 679-686.
[44] LI B D, TANG K, LI J L, et al. Stochastic ranking algorithm for many-objective optimization based on multiple indicators[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924-938.
[45] LI M Q, YANG S X, LIU X H. Shift-based density estimation for pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(3): 348-365.
[46] BEUME N, NAUJOKS B, EMMERICH M. Sms-emoa: Multiobjective selection based on dominated hypervolume[J]. European Journal of Operational Research, 2007, 181(3): 1653- 1669.
[47] WANG H D, JIAO L C, YAO X. Two_Arch2: An improved two-archive algorithm for manyobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 524- 541.
[48] ISHIBUCHI H, SETOGUCHI Y, MASUDA H, et al. Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(2): 169-190.
[49] DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91.
[50] GOLDEN B L, WONG R T. Capacitated arc routing problems[J]. Networks, 1981, 11(3): 305-315.
[51] MEI Y, TANG K, YAO X. Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(2): 151-165.
[52] TANG K, MEI Y, YAO X. Memetic algorithm with extended neighborhood search for capacitated arc routing problems[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1151-1166.
[53] TAYARANI-N M H, YAO X, XU H M. Meta-heuristic algorithms in car engine design: A literature survey[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 609-629.
[54] HUTCHINSON B, MITCHELL M. 50 years of test (un) fairness: Lessons for machine learning [C]//Proceedings of the Conference on Fairness, Accountability, and Transparency. 2019: 49- 58.
[55] CATON S, HAAS C. Fairness in machine learning: A survey[J]. arXiv preprint arXiv:2010.04053, 2020.
[56] BERK R, HEIDARI H, JABBARI S, et al. A convex framework for fair regression[J]. arXiv preprint arXiv:1706.02409, 2017.
[57] GOEL N, YAGHINI M, FALTINGS B. Non-discriminatory machine learning through convex fairness criteria[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018: volume 32. ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE, 2018: 3029-3036.
[58] TIAN Y, HE C, CHENG R, et al. A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(9): 5880-5894.
[59] RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.
[60] LI K, DEB K, ZHANG Q F, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 694-716.
[61] CHENG R, LI M Q, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81.
[62] DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657.
[63] DEB K. Multi-objective optimization using evolutionary algorithms: volume 16[M]. John Wiley & Sons, 2001.
[64] DEB K, GOYAL M. A combined genetic adaptive search (geneas) for engineering design[J]. Computer Science and Informatics, 1996, 26: 30-45.
[65] DEB K, JAIN H. An improved nsga-ii procedure for many-objective optimization, part i: Solvingproblems with box constraints[J]. KanGAL report, 2012, 2012009.
[66] BRESLOW N. A generalized kruskal-wallis test for comparing k samples subject to unequal patterns of censorship[J]. Biometrika, 1970, 57(3): 579-594.
[67] TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73- 87.
[68] CAMPBELL J F, LANGEVIN A. Roadway snow and ice control[M]//Arc Routing. Springer, 2000: 389-418.
[69] CHU F, LABADI N, PRINS C. A scatter search for the periodic capacitated arc routing problem [J]. European Journal of Operational Research, 2006, 169(2): 586-605.
[70] TANG K, WANG J, LI X D, et al. A scalable approach to capacitated arc routing problems based on hierarchical decomposition[J]. IEEE Transactions on Cybernetics, 2017, 47(11): 3928-3940.
[71] MEI Y, LI X D, YAO X. Decomposing large-scale capacitated arc routing problems using a random route grouping method[C]//Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE, 2013: 1013-1020.
[72] MEI Y, LI X D, YAO X. Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 435-449.
[73] MEI Y, LI X D, YAO X. Variable neighborhood decomposition for large scale capacitated arc routing problem[C]//Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE, 2014: 1313-1320.
[74] LIU J L, YAO X. Self-adaptive decomposition and incremental hyperparameter tuning across multiple problems[C]//2019 IEEE Symposium Series on Computational Intelligence. 2019: 1590-1597.
[75] HERTZ A, LAPORTE G, MITTAZ M. A tabu search heuristic for the capacitated arc routing problem[J]. Operations Research, 2000, 48(1): 129-135.
[76] BEULLENS P, MUYLDERMANS L, CATTRYSSE D, et al. A guided local search heuristic for the capacitated arc routing problem[J]. European Journal of Operational Research, 2003, 147(3): 629-643.
[77] GREISTORFER P. A tabu scatter search metaheuristic for the arc routing problem[J]. Computers & Industrial Engineering, 2003, 44(2): 249-266.
[78] LACOMME P, PRINS C, RAMDANE-CHERIF W. Competitive memetic algorithms for arc routing problems[J]. Annals of Operations Research, 2004, 131(1-4): 159-185.
[79] CUATE O, SCHÜTZE O. Variation rate to maintain diversity in decision space within multiobjective evolutionary algorithms[J]. Mathematical and Computational Applications, 2019, 24 (3): 82.
[80] DEARMON J S. A comparison of heuristics for the capacitated chinese postman problem[D]. University of Maryland (Doctoral dissertation), 1981.
[81] BENAVENT E, CAMPOS V, CORBERÁN A, et al. The capacitated arc routing problem: Lower bounds[J]. Networks, 1992, 22(7): 669-690.
[82] EGLESE R W. Routeing winter gritting vehicles[J]. Discrete Applied Mathematics, 1994, 48 (3): 231-244.
[83] EGLESE R W, LI L Y. A tabu search based heuristic for arc routing with a capacity constraint and time deadline[M]//Meta-Heuristics. Springer, 1996: 633-649.
[84] LI L Y, EGLESE R W. An interactive algorithm for vehicle routeing for winter—gritting[J]. Journal of the Operational Research Society, 1996, 47(2): 217-228.
[85] ZHOU A, JIN Y C, ZHANG Q F, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]//2006 IEEE International Conference on Evolutionary Computation. IEEE, 2006: 892-899.
[86] ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization: A short review[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, 2008: 2419-2426.
[87] MA H, LI Z Y, TAYARANI M, et al. Model-based computational intelligence multi-objective optimization for gasoline direct injection engine calibration[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(6): 1391-1402.
[88] MA H, LI Z Y, TAYARANI M, et al. Computational intelligence nonmodel-based calibration approach for internal combustion engines[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(4): 041002-1.
[89] KURZKE J, HALLIWELL I. Propulsion and power: An exploration of gas turbine performance modeling[M]. Springer, 2018.
[90] SAMADANI E, SHAMEKHI A H, BEHROOZI M H, et al. A method for pre-calibration of di diesel engine emissions and performance using neural network and multi-objective genetic algorithm[J]. Iranian Journal of Chemistry and Chemical Engineering, 2009, 28(4): 61-70.
[91] LYGOE R J, CARY M, FLEMING P J. A many-objective optimisation decision-making process applied to automotive diesel engine calibration[C]//Asia-Pacific Conference on Simulated Evolution and Learning. Springer, 2010: 638-646.
[92] LANGOUËT H, MÉTIVIER L, SINOQUET D, et al. Engine calibration: Multi-objective constrained optimization of engine maps[J]. Optimization and Engineering, 2011, 12(3): 407-424.
[93] REZAPOUR K. Exergy based SI engine model optimisation: Exergy based simulation and modelling of bi-fuel si engine for optimisation of equivalence ratio and ignition time using artificial neural network (ANN) emulation and particle swarm optimisation (PSO)[D]. University of Bradford (Doctoral dissertation), 2012.
[94] WONG K I, WONG P K, CHEUNG C S, et al. Modeling and optimization of biodiesel engine performance using advanced machine learning methods[J]. Energy, 2013, 55: 519-528.
[95] LIU J L, ZHANG Q Q, PEI J Y, et al. fsde: Efficient evolutionary optimisation for manyobjective aero-engine calibration[J]. Complex & Intelligent Systems, 2021: 1-17
[96] HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[C]//Proceedings of IEEE International Conference on Evolutionary Computation. IEEE, 1996: 312-317.
[97] ROY P K, CHOWDHARY S S, BHATIA R. A machine learning approach for automation of resume recommendation system[J]. Procedia Computer Science, 2020, 167: 2318-2327.
[98] KAMIRAN F, CALDERS T. Classifying without discriminating[C]//2009 2nd International Conference on Computer, Control and Communication. IEEE, 2009: 1-6.
[99] LARSON J, MATTU S, KIRCHNER L, et al. Data and analysis for “how we analyzed the compas recidivism algorithm”[EB/OL]. 2016
[2021-01-12]. https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm.
[100] MEHRABI N, MORSTATTER F, SAXENA N, et al. A survey on bias and fairness in machine learning[J]. arXiv preprint arXiv:1908.09635, 2019.
[101] VERMA S, RUBIN J. Fairness definitions explained[C]//2018 IEEE/ACM International Workshop on Software Fairness (FairWare). IEEE, 2018: 1-7.
[102] FRIEDLER S A, SCHEIDEGGER C, VENKATASUBRAMANIAN S, et al. A comparative study of fairness-enhancing interventions in machine learning[C]//Proceedings of the Conference on Fairness, Accountability, and Transparency. 2019: 329-338.
[103] ANAHIDEH H, NEZAMI N, ASUDEH A. On the choice of fairness: Finding representative fairness metrics for a given context[J]. arXiv preprint arXiv:2109.05697, 2021.
[104] MEHRABI N, MORSTATTER F, SAXENA N, et al. A survey on bias and fairness in machine learning[J]. ACM Computing Surveys, 2021, 54(6).
[105] HUANG L X, VISHNOI N. Stable and fair classification[C]//International Conference on Machine Learning. PMLR, 2019: 2879-2890.
[106] ZAFAR M B, VALERA I, GOMEZ RODRIGUEZ M, et al. Fairness beyond disparate treatment& disparate impact: Learning classification without disparate mistreatment[C]//Proceedings of the 26th international Conference on World Wide Web. 2017: 1171-1180.
[107] SPEICHER T, HEIDARI H, GRGIC-HLACA N, et al. A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 2239-2248.
[108] GRGIĆ-HLAČA N, ZAFAR M B, GUMMADI K P, et al. On fairness, diversity and randomness in algorithmic decision making[J]. arXiv preprint arXiv:1706.10208, 2017.
[109] KENFACK P J, KHAN A M, KAZMI S A, et al. Impact of model ensemble on the fairness of classifiers in machine learning[C]//2021 International Conference on Applied Artificial Intelligence (ICAPAI). 2021: 1-6.
[110] IOSIFIDIS V, NTOUTSI E. Adafair: Cumulative fairness adaptive boosting[C]//CIKM ’19: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: Association for Computing Machinery, 2019: 781–790.
[111] WU H L, MA C, MITRA B, et al. Multi-FR: A multi-objective optimization method for achieving two-sided fairness in e-commerce recommendation[J]. arXiv preprint arXiv:2105.02951, 2021.
[112] PADH K, ANTOGNINI D, GLAUDE E L, et al. Addressing fairness in classification with a model-agnostic multi-objective algorithm[J]. arXiv preprint arXiv:2009.04441, 2020.
[113] LIU S, VICENTE L N. Accuracy and fairness trade-offs in machine learning: A stochastic multi-objective approach[J]. arXiv preprint arXiv:2008.01132, 2020.
[114] GEDEN M, ANDREWS J. Fair and interpretable algorithmic hiring using evolutionary many objective optimization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(17): 14795-14803.
[115] YAO X, LIU Y. A new evolutionary system for evolving artificial neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 694-713.
[116] YAO X. Evolving artificial neural networks[J]. Proceedings of the IEEE, 1999, 87(9): 1423- 1447.
[117] CHANDRA A, YAO X. Ensemble learning using multi-objective evolutionary algorithms[J]. Journal of Mathematical Modelling and Algorithms, 2006, 5(4): 417-445.
[118] CHEN H H, YAO X. Multiobjective neural network ensembles based on regularized negative correlation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(12): 1738-1751.
[119] LI B, TANG K, LI J, et al. Stochastic ranking algorithm for many-objective optimization based on multiple indicators[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924- 938.
[120] RUNARSSON T, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.
[121] MINKU L L, YAO X. Software effort estimation as a multiobjective learning problem[J]. ACM Transactions on Software Engineering and Methodology, 2013, 22(4): 1-32.
[122] GONG Z C, CHEN H H, YUAN B, et al. Multiobjective learning in the model space for time series classification[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 918-932.
[123] RUDER S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv:1609.04747, 2016.
[124] SENER O, KOLTUN V. Multi-task learning as multi-objective optimization[C]//NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018: 525–536.
[125] CORTEZ P, SILVA A M G. Using data mining to predict secondary school student performance[C]//Proceedings of 5th Annual Future Business Technology Conference, Porto, 2008. EUROSIS-ETI, 2008: 5-12.
[126] KEARNS M, NEEL S, ROTH A, et al. An empirical study of rich subgroup fairness for machine learning[C]//FAT* ’19: Proceedings of the Conference on Fairness, Accountability, and Transparency. New York, NY, USA: Association for Computing Machinery, 2019: 100–109.
[127] SANDER R H. A systemic analysis of affirmative action in american law schools[J]. Stanford Law Review, 2004, 57: 367-483.
[128] YEH I C, HUI LIEN C. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients[J]. Expert Systems with Applications, 2009, 36 (2, Part 1): 2473-2480.
[129] KOHAVI R, BECKER B. UCI machine learning repository: The adult income data set[EB/OL]. 1998
[2021-01-12]. https://archive.ics.uci.edu/ml/datasets/Adult.
[130] ZAFAR M B, VALERA I, ROGRIGUEZ M G, et al. Fairness constraints: Mechanisms for fair classification[C]//Artificial Intelligence and Statistics. PMLR, 2017: 962-970.
[131] KAMIRAN F, CALDERS T. Data preprocessing techniques for classification without discrimination[J]. Knowledge and Information Systems, 2012, 33(1): 1-33.
[132] PESSACH D, SHMUELI E. Algorithmic fairness[J]. arXiv preprint arXiv:2001.09784, 2020.
[133] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth International Conference on Artificial Intelligenceand Statistics. JMLR Workshop and Conference Proceedings, 2010: 249-256.
[134] TIAN Y, CHENG R, ZHANG X Y, et al. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier][J]. IEEE Computational Intelligence Magazine, 2019, 14(3): 61-74.
[135] HUSSAIN S, DAHAN N A, BA-ALWIB F M, et al. Educational data mining and analysis of students’academic performance using weka[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2018, 9(2): 447-459.
[136] CHICCO D, JURMAN G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone[J]. BMC Medical Informatics and Decision Making, 2020, 20(1): 1-16.
[137] DUA D, GRAFF C. UCI machine learning repository[EB/OL]. University of California, Irvine, School of Information and Computer Sciences, 2017. http://archive.ics.uci.edu/ml.
[138] HUSSAIN S, ATALLAH R, KAMSIN A, et al. Classification, clustering and association rule mining in educational datasets using data mining tools: A case study[C]//Computer Science On-line Conference. Springer, 2018: 196-211.
[139] YANG S, ISLAM M T. Ibm employee attrition analysis[J]. arXiv preprint arXiv:2012.01286, 2020.
[140] FEHRMAN E, MUHAMMAD A K, MIRKES E M, et al. The five factor model of personality and evaluation of drug consumption risk[M]//Data Science. Springer, 2017: 231-242.
[141] RALLAPALLI S, SURYAKANTHI T. Predicting the risk of diabetes in big data electronic health records by using scalable random forest classification algorithm[C]//2016 International Conference on Advances in Computing and Communication Engineering (ICACCE). IEEE, 2016: 281-284.
[142] YAO X, LIU Y. Making use of population information in evolutionary artificial neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1998, 28(3):417-425.
[143] ZHANG X Y, TIAN Y, JIN Y C. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776.
[144] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[J]. the Journal of Machine Learning Research, 2011, 12: 2825-2830.
[145] DERRINGER G C. A balancing act-optimizing a products properties[J]. Quality Progress, 1994, 27(6): 51-58.
[146] VIEIRA G S, PEREIRA L M, HUBINGER M D. Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function[J]. International Journal of Food Science & Technology, 2012, 47(1): 132-140.
[147] WANG S, YAO X. Multiclass imbalance problems: Analysis and potential solutions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(4): 1119-1130
修改评论