中文版 | English
题名

基于指标的多目标优化算法及其应用

姓名
姓名拼音
ZHANG Qingquan
学号
11930582
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
姚新
导师单位
计算机科学与工程系
论文答辩日期
2022-05-08
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

 基于指标的多目标优化算法作为进化算法处理超多目标优化问题中的一类较新算法,具有搜索能力强的特点,能够巧妙地解决了大量非支配解所引起的低选择压力的问题。而在设计算法时,如何高效地平衡由算法所得解集的收敛性与多样性一直是备受关注的研究话题。另一方面,大量的研究也聚焦在如何高效地处理不同实际背景的多目标优化问题。本文针对基于指标的超多目标进化算法设计及其在不同场景下的应用这两方面,提出了相应的改进方法,工作内容和创新点可分为四个方面。

  1. 在基于指标的多目标进化算法研究中,我们通过考虑支配解之间的支配关系来改进SDE,设计了一种更为通用的排序方法SDE+。充分利用SDE+的特点,我们在环境选择上设计了两种不同的策略,并提出了一种新的基于指标的多目标进化算法,即SDE+-MOEA。大量的实验研究表明,SDE+-MOEA在所比较的多目标进化算法中具有最佳的整体性能。
  2. 在解决组合优化问题CARP中,我们提出了一种衡量决策空间多样性的新方法,同时设计有效的监测并提升解在决策变量空间的多样性,并应用于一个著名的算法DMAENS中,实验表明,使用我们的方法D-MAENS2能够有效地在目标空间中找到成本更低的高质量解。
  3. 在解决航空发动机参数标定问题中,我们提出了具有简单框架的fSDE算法,该算法的实时性能方面优于前沿算法。同时,与经验丰富的人类工程师使用传统手动校准过程查找单个参数所需的时间相比,所提出的fSDE算法搜索到高质量的发动机参数所花费的时间少十倍。
  4. 在提升机器学习模型公平性问题中,我们提出了一种新颖的多目标进化学习框架来减轻不公平性,该框架可以同时优化多个公平指标而不牺牲其中任何一个。并且基于此框架的集成方法能够自动实现准确性和多种公平性措施之间的权衡。
关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07-02
参考文献列表

[1] KASPRZYK J R, REED P M, KIRSCH B R, et al. Managing population and drought risks using many-objective water portfolio planning under uncertainty[J]. Water Resources Research, 2009, 45: W12401.

[2] FLEMING P J, PURSHOUSE R C, LYGOE R J. Many-objective optimization: An engineering design perspective[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2005: 14-32.

[3] KRUISSELBRINK J W, EMMERICH M T, BÄCK T, et al. Combining aggregation with pareto optimization: A case study in evolutionary molecular design[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2009: 453-467.

[4] LACOMME P, PRINS C, SEVAUX M. A genetic algorithm for a bi-objective capacitated arc routing problem[J]. Computers & Operations Research, 2006, 33(12): 3473-3493.

[5] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering [J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.

[6] FLEMING P J, PURSHOUSE R C. Evolutionary algorithms in control systems engineering: A survey[J]. Control Engineering Practice, 2002, 10(11): 1223-1241.

[7] COELLO C A C, LAMONT G B, VAN VELDHUIZEN D A, et al. Evolutionary algorithms for solving multi-objective problems: volume 5[M]. Springer, 2007.

[8] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

[9] ZITZLER E, LAUMANNS M, THIELE L. Spea2: Improving the strength pareto evolutionary algorithm[J]. TIK-report, 2001, 103.

[10] CORNE D W, JERRAM N R, KNOWLES J D, et al. Pesa-ii: Region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. 2001: 283-290.

[11] SÜLFLOW A, DRECHSLER N, DRECHSLER R. Robust multi-objective optimization in high dimensional spaces[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2007: 715-726.

[12] MIETTINEN K. Nonlinear multiobjective optimization: volume 12[M]. Springer Science & Business Media, 2012.

[13] DEB K. Multi-objective optimisation using evolutionary algorithms: an introduction[M]// Multi-objective evolutionary optimisation for product design and manufacturing. Springer, 2011: 3-34.

[14] LI M Q, YAO X. Quality evaluation of solution sets in multiobjective optimisation: A survey [J]. ACM Computing Surveys, 2019, 52(2): 1-38.

[15] LI B D, LI J L, TANG K, et al. Many-objective evolutionary algorithms: A survey[J]. ACM Computing Surveys, 2015, 48(1): 1-35.

[16] PRADITWONG K, YAO X. How well do multi-objective evolutionary algorithms scale to large problems[C]//2007 IEEE Congress on Evolutionary Computation. IEEE, 2007: 3959-3966.

[17] KHARE V, YAO X, DEB K. Performance scaling of multi-objective evolutionary algorithms[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2003: 376-390.

[18] SHANG K, ISHIBUCHI H, HE L J, et al. A survey on the hypervolume indicator in evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 1-20.

[19] WAGNER T, BEUME N, NAUJOKS B. Pareto-, aggregation-, and indicator-based methods in many-objective optimization[C]//International Conference on Evolutionary Multi-criterion Optimization. Springer, 2007: 742-756.

[20] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (5): 477-506.

[21] IKEDA K, KITA H, KOBAYASHI S. Failure of pareto-based moeas: Does non-dominated really mean near to optimal?[C]//Proceedings of the 2001 Congress on Evolutionary Computation: volume 2. IEEE, 2001: 957-962.

[22] KNOWLES J, CORNE D. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2007: 757-771.

[23] BRANKE J, KAUSSLER T, SCHMECK H. Guidance in evolutionary multi-objective optimization[J]. Advances in Engineering Software, 2001, 32(6): 499-507.

[24] FARINA M, AMATO P. A fuzzy definition of” optimality” for many-criteria optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2004, 34(3): 315-326.

[25] DI PIERRO F, KHU S T, SAVIC D A. An investigation on preference order ranking scheme for multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 17-45.

[26] AGUIRRE H, TANAKA K. Space partitioning with adaptive 𝜀-ranking and substitute distance assignments: A comparative study on many-objective mnk-landscapes[C]//Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. 2009: 547-554.

[27] LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.

[28] KÖPPEN M, YOSHIDA K. Substitute distance assignments in nsga-ii for handling manyobjective optimization problems[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2007: 727-741.

[29] LI M Q, ZHENG J H, LI K, et al. Enhancing diversity for average ranking method in evolutionary many-objective optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2010: 647-656.

[30] KUKKONEN S, LAMPINEN J. Ranking-dominance and many-objective optimization[C]// 2007 IEEE Congress on Evolutionary Computation. IEEE, 2007: 3983-3990.

[31] MANEERATANA K, BOONLONG K, CHAIYARATANA N. Compressed-objective genetic algorithm[M]//Parallel Problem Solving from Nature-PPSN IX. Springer, 2006: 473-482.

[32] GARZA-FABRE M, TOSCANO-PULIDO G, COELLO C A C. Two novel approaches for many-objective optimization[C]//IEEE Congress on Evolutionary Computation. IEEE, 2010: 1-8.

[33] MOSTAGHIM S, SCHMECK H. Distance based ranking in many-objective particle swarm optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2008: 753-762.

[34] CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (5): 773-791.

[35] ZHANG Q F, LI H. Moea/d: A multiobjective evolutionary algorithm based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.

[36] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-pointbased nondominated sorting approach, part i: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.

[37] TIAN Y, CHENG R, ZHANG X Y, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4): 609-622.

[38] WHILE L, HINGSTON P, BARONE L, et al. A faster algorithm for calculating hypervolume [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29-38.

[39] BROCKHOFF D, WAGNER T, TRAUTMANN H. On the properties of the r2 indicator[C]// Proceedings of the 14th annual Conference on Genetic and Evolutionary Computation. 2012: 465-472.

[40] SHANG K, ISHIBUCHI H, NI X. R2-based hypervolume contribution approximation[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 185-192.

[41] TIAN Y, ZHANG X Y, CHENG R, et al. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric[C]//2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016: 5222-5229.

[42] ZITZLER E, KÜNZLI S. Indicator-based selection in multiobjective search[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2004: 832-842.

[43] HERNÁNDEZ GÓMEZ R, COELLO COELLO C A. Improved metaheuristic based on the r2 indicator for many-objective optimization[C]//Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. 2015: 679-686.

[44] LI B D, TANG K, LI J L, et al. Stochastic ranking algorithm for many-objective optimization based on multiple indicators[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924-938.

[45] LI M Q, YANG S X, LIU X H. Shift-based density estimation for pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(3): 348-365.

[46] BEUME N, NAUJOKS B, EMMERICH M. Sms-emoa: Multiobjective selection based on dominated hypervolume[J]. European Journal of Operational Research, 2007, 181(3): 1653- 1669.

[47] WANG H D, JIAO L C, YAO X. Two_Arch2: An improved two-archive algorithm for manyobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 524- 541.

[48] ISHIBUCHI H, SETOGUCHI Y, MASUDA H, et al. Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(2): 169-190.

[49] DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91.

[50] GOLDEN B L, WONG R T. Capacitated arc routing problems[J]. Networks, 1981, 11(3): 305-315.

[51] MEI Y, TANG K, YAO X. Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(2): 151-165.

[52] TANG K, MEI Y, YAO X. Memetic algorithm with extended neighborhood search for capacitated arc routing problems[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1151-1166.

[53] TAYARANI-N M H, YAO X, XU H M. Meta-heuristic algorithms in car engine design: A literature survey[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 609-629.

[54] HUTCHINSON B, MITCHELL M. 50 years of test (un) fairness: Lessons for machine learning [C]//Proceedings of the Conference on Fairness, Accountability, and Transparency. 2019: 49- 58.

[55] CATON S, HAAS C. Fairness in machine learning: A survey[J]. arXiv preprint arXiv:2010.04053, 2020.

[56] BERK R, HEIDARI H, JABBARI S, et al. A convex framework for fair regression[J]. arXiv preprint arXiv:1706.02409, 2017.

[57] GOEL N, YAGHINI M, FALTINGS B. Non-discriminatory machine learning through convex fairness criteria[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018: volume 32. ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE, 2018: 3029-3036.

[58] TIAN Y, HE C, CHENG R, et al. A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(9): 5880-5894.

[59] RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.

[60] LI K, DEB K, ZHANG Q F, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 694-716.

[61] CHENG R, LI M Q, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81.

[62] DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657.

[63] DEB K. Multi-objective optimization using evolutionary algorithms: volume 16[M]. John Wiley & Sons, 2001.

[64] DEB K, GOYAL M. A combined genetic adaptive search (geneas) for engineering design[J]. Computer Science and Informatics, 1996, 26: 30-45.

[65] DEB K, JAIN H. An improved nsga-ii procedure for many-objective optimization, part i: Solvingproblems with box constraints[J]. KanGAL report, 2012, 2012009.

[66] BRESLOW N. A generalized kruskal-wallis test for comparing k samples subject to unequal patterns of censorship[J]. Biometrika, 1970, 57(3): 579-594.

[67] TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73- 87.

[68] CAMPBELL J F, LANGEVIN A. Roadway snow and ice control[M]//Arc Routing. Springer, 2000: 389-418.

[69] CHU F, LABADI N, PRINS C. A scatter search for the periodic capacitated arc routing problem [J]. European Journal of Operational Research, 2006, 169(2): 586-605.

[70] TANG K, WANG J, LI X D, et al. A scalable approach to capacitated arc routing problems based on hierarchical decomposition[J]. IEEE Transactions on Cybernetics, 2017, 47(11): 3928-3940.

[71] MEI Y, LI X D, YAO X. Decomposing large-scale capacitated arc routing problems using a random route grouping method[C]//Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE, 2013: 1013-1020.

[72] MEI Y, LI X D, YAO X. Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 435-449.

[73] MEI Y, LI X D, YAO X. Variable neighborhood decomposition for large scale capacitated arc routing problem[C]//Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE, 2014: 1313-1320.

[74] LIU J L, YAO X. Self-adaptive decomposition and incremental hyperparameter tuning across multiple problems[C]//2019 IEEE Symposium Series on Computational Intelligence. 2019: 1590-1597.

[75] HERTZ A, LAPORTE G, MITTAZ M. A tabu search heuristic for the capacitated arc routing problem[J]. Operations Research, 2000, 48(1): 129-135.

[76] BEULLENS P, MUYLDERMANS L, CATTRYSSE D, et al. A guided local search heuristic for the capacitated arc routing problem[J]. European Journal of Operational Research, 2003, 147(3): 629-643.

[77] GREISTORFER P. A tabu scatter search metaheuristic for the arc routing problem[J]. Computers & Industrial Engineering, 2003, 44(2): 249-266.

[78] LACOMME P, PRINS C, RAMDANE-CHERIF W. Competitive memetic algorithms for arc routing problems[J]. Annals of Operations Research, 2004, 131(1-4): 159-185.

[79] CUATE O, SCHÜTZE O. Variation rate to maintain diversity in decision space within multiobjective evolutionary algorithms[J]. Mathematical and Computational Applications, 2019, 24 (3): 82.

[80] DEARMON J S. A comparison of heuristics for the capacitated chinese postman problem[D]. University of Maryland (Doctoral dissertation), 1981.

[81] BENAVENT E, CAMPOS V, CORBERÁN A, et al. The capacitated arc routing problem: Lower bounds[J]. Networks, 1992, 22(7): 669-690.

[82] EGLESE R W. Routeing winter gritting vehicles[J]. Discrete Applied Mathematics, 1994, 48 (3): 231-244.

[83] EGLESE R W, LI L Y. A tabu search based heuristic for arc routing with a capacity constraint and time deadline[M]//Meta-Heuristics. Springer, 1996: 633-649.

[84] LI L Y, EGLESE R W. An interactive algorithm for vehicle routeing for winter—gritting[J]. Journal of the Operational Research Society, 1996, 47(2): 217-228.

[85] ZHOU A, JIN Y C, ZHANG Q F, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]//2006 IEEE International Conference on Evolutionary Computation. IEEE, 2006: 892-899.

[86] ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization: A short review[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, 2008: 2419-2426.

[87] MA H, LI Z Y, TAYARANI M, et al. Model-based computational intelligence multi-objective optimization for gasoline direct injection engine calibration[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(6): 1391-1402.

[88] MA H, LI Z Y, TAYARANI M, et al. Computational intelligence nonmodel-based calibration approach for internal combustion engines[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(4): 041002-1.

[89] KURZKE J, HALLIWELL I. Propulsion and power: An exploration of gas turbine performance modeling[M]. Springer, 2018.

[90] SAMADANI E, SHAMEKHI A H, BEHROOZI M H, et al. A method for pre-calibration of di diesel engine emissions and performance using neural network and multi-objective genetic algorithm[J]. Iranian Journal of Chemistry and Chemical Engineering, 2009, 28(4): 61-70.

[91] LYGOE R J, CARY M, FLEMING P J. A many-objective optimisation decision-making process applied to automotive diesel engine calibration[C]//Asia-Pacific Conference on Simulated Evolution and Learning. Springer, 2010: 638-646.

[92] LANGOUËT H, MÉTIVIER L, SINOQUET D, et al. Engine calibration: Multi-objective constrained optimization of engine maps[J]. Optimization and Engineering, 2011, 12(3): 407-424.

[93] REZAPOUR K. Exergy based SI engine model optimisation: Exergy based simulation and modelling of bi-fuel si engine for optimisation of equivalence ratio and ignition time using artificial neural network (ANN) emulation and particle swarm optimisation (PSO)[D]. University of Bradford (Doctoral dissertation), 2012.

[94] WONG K I, WONG P K, CHEUNG C S, et al. Modeling and optimization of biodiesel engine performance using advanced machine learning methods[J]. Energy, 2013, 55: 519-528.

[95] LIU J L, ZHANG Q Q, PEI J Y, et al. fsde: Efficient evolutionary optimisation for manyobjective aero-engine calibration[J]. Complex & Intelligent Systems, 2021: 1-17

[96] HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[C]//Proceedings of IEEE International Conference on Evolutionary Computation. IEEE, 1996: 312-317.

[97] ROY P K, CHOWDHARY S S, BHATIA R. A machine learning approach for automation of resume recommendation system[J]. Procedia Computer Science, 2020, 167: 2318-2327.

[98] KAMIRAN F, CALDERS T. Classifying without discriminating[C]//2009 2nd International Conference on Computer, Control and Communication. IEEE, 2009: 1-6.

[99] LARSON J, MATTU S, KIRCHNER L, et al. Data and analysis for “how we analyzed the compas recidivism algorithm”[EB/OL]. 2016

[2021-01-12]. https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm.

[100] MEHRABI N, MORSTATTER F, SAXENA N, et al. A survey on bias and fairness in machine learning[J]. arXiv preprint arXiv:1908.09635, 2019.

[101] VERMA S, RUBIN J. Fairness definitions explained[C]//2018 IEEE/ACM International Workshop on Software Fairness (FairWare). IEEE, 2018: 1-7.

[102] FRIEDLER S A, SCHEIDEGGER C, VENKATASUBRAMANIAN S, et al. A comparative study of fairness-enhancing interventions in machine learning[C]//Proceedings of the Conference on Fairness, Accountability, and Transparency. 2019: 329-338.

[103] ANAHIDEH H, NEZAMI N, ASUDEH A. On the choice of fairness: Finding representative fairness metrics for a given context[J]. arXiv preprint arXiv:2109.05697, 2021.

[104] MEHRABI N, MORSTATTER F, SAXENA N, et al. A survey on bias and fairness in machine learning[J]. ACM Computing Surveys, 2021, 54(6).

[105] HUANG L X, VISHNOI N. Stable and fair classification[C]//International Conference on Machine Learning. PMLR, 2019: 2879-2890.

[106] ZAFAR M B, VALERA I, GOMEZ RODRIGUEZ M, et al. Fairness beyond disparate treatment& disparate impact: Learning classification without disparate mistreatment[C]//Proceedings of the 26th international Conference on World Wide Web. 2017: 1171-1180.

[107] SPEICHER T, HEIDARI H, GRGIC-HLACA N, et al. A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 2239-2248.

[108] GRGIĆ-HLAČA N, ZAFAR M B, GUMMADI K P, et al. On fairness, diversity and randomness in algorithmic decision making[J]. arXiv preprint arXiv:1706.10208, 2017.

[109] KENFACK P J, KHAN A M, KAZMI S A, et al. Impact of model ensemble on the fairness of classifiers in machine learning[C]//2021 International Conference on Applied Artificial Intelligence (ICAPAI). 2021: 1-6.

[110] IOSIFIDIS V, NTOUTSI E. Adafair: Cumulative fairness adaptive boosting[C]//CIKM ’19: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: Association for Computing Machinery, 2019: 781–790.

[111] WU H L, MA C, MITRA B, et al. Multi-FR: A multi-objective optimization method for achieving two-sided fairness in e-commerce recommendation[J]. arXiv preprint arXiv:2105.02951, 2021.

[112] PADH K, ANTOGNINI D, GLAUDE E L, et al. Addressing fairness in classification with a model-agnostic multi-objective algorithm[J]. arXiv preprint arXiv:2009.04441, 2020.

[113] LIU S, VICENTE L N. Accuracy and fairness trade-offs in machine learning: A stochastic multi-objective approach[J]. arXiv preprint arXiv:2008.01132, 2020.

[114] GEDEN M, ANDREWS J. Fair and interpretable algorithmic hiring using evolutionary many objective optimization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(17): 14795-14803.

[115] YAO X, LIU Y. A new evolutionary system for evolving artificial neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 694-713.

[116] YAO X. Evolving artificial neural networks[J]. Proceedings of the IEEE, 1999, 87(9): 1423- 1447.

[117] CHANDRA A, YAO X. Ensemble learning using multi-objective evolutionary algorithms[J]. Journal of Mathematical Modelling and Algorithms, 2006, 5(4): 417-445.

[118] CHEN H H, YAO X. Multiobjective neural network ensembles based on regularized negative correlation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(12): 1738-1751.

[119] LI B, TANG K, LI J, et al. Stochastic ranking algorithm for many-objective optimization based on multiple indicators[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924- 938.

[120] RUNARSSON T, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.

[121] MINKU L L, YAO X. Software effort estimation as a multiobjective learning problem[J]. ACM Transactions on Software Engineering and Methodology, 2013, 22(4): 1-32.

[122] GONG Z C, CHEN H H, YUAN B, et al. Multiobjective learning in the model space for time series classification[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 918-932.

[123] RUDER S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv:1609.04747, 2016.

[124] SENER O, KOLTUN V. Multi-task learning as multi-objective optimization[C]//NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018: 525–536.

[125] CORTEZ P, SILVA A M G. Using data mining to predict secondary school student performance[C]//Proceedings of 5th Annual Future Business Technology Conference, Porto, 2008. EUROSIS-ETI, 2008: 5-12.

[126] KEARNS M, NEEL S, ROTH A, et al. An empirical study of rich subgroup fairness for machine learning[C]//FAT* ’19: Proceedings of the Conference on Fairness, Accountability, and Transparency. New York, NY, USA: Association for Computing Machinery, 2019: 100–109.

[127] SANDER R H. A systemic analysis of affirmative action in american law schools[J]. Stanford Law Review, 2004, 57: 367-483.

[128] YEH I C, HUI LIEN C. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients[J]. Expert Systems with Applications, 2009, 36 (2, Part 1): 2473-2480.

[129] KOHAVI R, BECKER B. UCI machine learning repository: The adult income data set[EB/OL]. 1998

[2021-01-12]. https://archive.ics.uci.edu/ml/datasets/Adult.

[130] ZAFAR M B, VALERA I, ROGRIGUEZ M G, et al. Fairness constraints: Mechanisms for fair classification[C]//Artificial Intelligence and Statistics. PMLR, 2017: 962-970.

[131] KAMIRAN F, CALDERS T. Data preprocessing techniques for classification without discrimination[J]. Knowledge and Information Systems, 2012, 33(1): 1-33.

[132] PESSACH D, SHMUELI E. Algorithmic fairness[J]. arXiv preprint arXiv:2001.09784, 2020.

[133] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth International Conference on Artificial Intelligenceand Statistics. JMLR Workshop and Conference Proceedings, 2010: 249-256.

[134] TIAN Y, CHENG R, ZHANG X Y, et al. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier][J]. IEEE Computational Intelligence Magazine, 2019, 14(3): 61-74.

[135] HUSSAIN S, DAHAN N A, BA-ALWIB F M, et al. Educational data mining and analysis of students’academic performance using weka[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2018, 9(2): 447-459.

[136] CHICCO D, JURMAN G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone[J]. BMC Medical Informatics and Decision Making, 2020, 20(1): 1-16.

[137] DUA D, GRAFF C. UCI machine learning repository[EB/OL]. University of California, Irvine, School of Information and Computer Sciences, 2017. http://archive.ics.uci.edu/ml.

[138] HUSSAIN S, ATALLAH R, KAMSIN A, et al. Classification, clustering and association rule mining in educational datasets using data mining tools: A case study[C]//Computer Science On-line Conference. Springer, 2018: 196-211.

[139] YANG S, ISLAM M T. Ibm employee attrition analysis[J]. arXiv preprint arXiv:2012.01286, 2020.

[140] FEHRMAN E, MUHAMMAD A K, MIRKES E M, et al. The five factor model of personality and evaluation of drug consumption risk[M]//Data Science. Springer, 2017: 231-242.

[141] RALLAPALLI S, SURYAKANTHI T. Predicting the risk of diabetes in big data electronic health records by using scalable random forest classification algorithm[C]//2016 International Conference on Advances in Computing and Communication Engineering (ICACCE). IEEE, 2016: 281-284.

[142] YAO X, LIU Y. Making use of population information in evolutionary artificial neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1998, 28(3):417-425.

[143] ZHANG X Y, TIAN Y, JIN Y C. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776.

[144] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[J]. the Journal of Machine Learning Research, 2011, 12: 2825-2830.

[145] DERRINGER G C. A balancing act-optimizing a products properties[J]. Quality Progress, 1994, 27(6): 51-58.

[146] VIEIRA G S, PEREIRA L M, HUBINGER M D. Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function[J]. International Journal of Food Science & Technology, 2012, 47(1): 132-140.

[147] WANG S, YAO X. Multiclass imbalance problems: Analysis and potential solutions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(4): 1119-1130

所在学位评定分委会
计算机科学与工程系
国内图书分类号
TP183
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335741
专题工学院_计算机科学与工程系
推荐引用方式
GB/T 7714
张清泉. 基于指标的多目标优化算法及其应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930582-张清泉-计算机科学与工(18122KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张清泉]的文章
百度学术
百度学术中相似的文章
[张清泉]的文章
必应学术
必应学术中相似的文章
[张清泉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。