[1] MASON E A. From pig bladders and cracked jars to polysulfones: an historical perspective on membrane transport [J]. Journal of Membrane Science, 1991, 60(2): 125-45.
[2] LONSDALE H K. The growth of membrane technology [J]. Journal of Membrane Science, 1982, 10(2): 81-181.
[3] LOEB S, SOURIRAJAN S. Sea water demineralization by means of an osmotic membrane [M]. Saline Water Conversion—II. American Chemical Society. 1963: 117-32.
[4] GALIANO F, BRICEñO K, MARINO T, et al. Advances in biopolymer-based membrane preparation and applications [J]. Journal of Membrane Science, 2018, 564: 562-86.
[5] NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes [J]. Journal of Membrane Science, 2020, 598.
[6] HENIS J M S, TRIPODI M K. Composite hollow fiber membranes for gas separation: the resistance model approach [J]. Journal of Membrane Science, 1981, 8(3): 233-46.
[7] TUSEL G F, BRüSCHKE H E A. Use of pervaporation systems in the chemical industry [J]. Desalination, 1985, 53(1): 327-38.
[8] KHAYET M. Membranes and theoretical modeling of membrane distillation: a review [J]. Advances in Colloid and Interface Science, 2011, 164(1): 56-88.
[9] MCCAFFREY R R, MCATEE R E, GREY A E, et al. Inorganic membrane technology [J]. Separation Science and Technology, 1987, 22(2-3): 873-87.
[10] DEIBERT W, IVANOVA M E, BAUMANN S, et al. Ion-conducting ceramic membrane reactors for high-temperature applications [J]. Journal of Membrane Science, 2017, 543: 79-97.
[11] YUN S, TED OYAMA S. Correlations in palladium membranes for hydrogen separation: a review [J]. Journal of Membrane Science, 2011, 375(1): 28-45.
[12] YADAV P, ISMAIL N, ESSALHI M, et al. Assessment of the environmental impact of polymeric membrane production [J]. Journal of Membrane Science, 2021, 622: 118987.
[13] LAWLER W, BRADFORD-HARTKE Z, CRAN M, et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes [J]. Desalination, 2012, 299: 103-12.
[14] XIE W, LI T, TIRAFERRI A, et al. Toward the next generation of sustainable membranes from green chemistry principles [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 50-75.
[15] MORIYA A, MARUYAMA T, OHMUKAI Y, et al. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods [J]. Journal of Membrane Science, 2009, 342(1): 307-12.
[16] DASARI A, QUIRóS J, HERRERO B, et al. Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles [J]. Journal of Membrane Science, 2012, 405-406: 134-40.
[17] LI S, WANG X, GUO Y, et al. Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: a review [J]. Journal of Cleaner Production, 2022, 333: 130171.
[18] MANSOORI S, DAVARNEJAD R, MATSUURA T, et al. Membranes based on non-synthetic (natural) polymers for wastewater treatment [J]. Polymer Testing, 2020, 84: 106381.
[19] RINAUDO M. Chitin and chitosan: properties and applications [J]. Progress in Polymer Science, 2006, 31(7): 603-32.
[20] KURITA K. Chitin and chitosan: functional biopolymers from marine crustaceans [J]. Marine Biotechnology, 2006, 8(3): 203-26.
[21] RAVI KUMAR M N V. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers, 2000, 46(1): 1-27.
[22] PILLAI C K S, PAUL W, SHARMA C P. Chitin and chitosan polymers: chemistry, solubility and fiber formation [J]. Progress in Polymer Science, 2009, 34(7): 641-78.
[23] FANG Y, ZHANG R, DUAN B, et al. Recyclable universal solvents for chitin to chitosan with various degrees of acetylation and construction of robust hydrogels [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2725-33.
[24] DUAN J, LIANG X, CAO Y, et al. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture [J]. Macromolecules, 2015, 48(8): 2706-14.
[25] FANG Y, DUAN B, LU A, et al. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution [J]. Biomacromolecules, 2015, 16(4): 1410-7.
[26] XU D, HEIN S, WANG K. Chitosan membrane in separation applications [J]. Materials Science and Technology, 2008, 24(9): 1076-87.
[27] JAFARI SANJARI A, ASGHARI M. A review on chitosan utilization in membrane synthesis [J]. ChemBioEng Reviews, 2016, 3(3): 134-58.
[28] THAKUR V K, VOICU S I. Recent advances in cellulose and chitosan based membranes for water purification: a concise review [J]. Carbohydrate Polymers, 2016, 146: 148-65.
[29] ITO A, SATO M, ANMA T. Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas [J]. Die Angewandte Makromolekulare Chemie, 1997, 248(1): 85-94.
[30] BORGOHAIN R. Perspectives for chitosan-based membranes in CO2/N2 separation : structure-property relationship [J]. Greenhouse Gases: Science and Technology, 2021, 11(2): 394-408.
[31] URAGAMI T, SAITO T, MIYATA T. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes [J]. Carbohydrate Polymers, 2015, 120: 1-6.
[32] SALEHI E, DARAEI P, ARABI SHAMSABADI A. A review on chitosan-based adsorptive membranes [J]. Carbohydrate Polymers, 2016, 152: 419-32.
[33] VEDULA S S, YADAV G D. Chitosan-based membranes preparation and applications: challenges and opportunities [J]. Journal of the Indian Chemical Society, 2021, 98(2): 100017.
[34] GUIBAL E. Interactions of metal ions with chitosan-based sorbents: a review [J]. Sep Purif Technol, 2004, 38(1): 43-74.
[35] GUIBAL E, VINCENT T, NAVARRO R. Metal ion biosorption on chitosan for the synthesis of advanced materials [J]. Journal of Materials Science, 2014, 49(16): 5505-18.
[36] ZHANG L, ZENG Y, CHENG Z. Removal of heavy metal ions using chitosan and modified chitosan: a review [J]. Journal of Molecular Liquids, 2016, 214: 175-91.
[37] GHAEE A, SHARIATY-NIASSAR M, BARZIN J, et al. Effects of chitosan membrane morphology on copper ion adsorption [J]. Chemical Engineering Journal, 2010, 165(1): 46-55.
[38] BEPPU M M, ARRUDA E J, VIEIRA R S, et al. Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine [J]. Journal of Membrane Science, 2004, 240(1): 227-35.
[39] VIEIRA R S, BEPPU M M. Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres [J]. Water Research, 2006, 40(8): 1726-34.
[40] KAMIŃSKI W, MODRZEJEWSKA Z. Application of chitosan membranes in separation of heavy metal ions [J]. Separation Science and Technology, 1997, 32(16): 2659-68.
[41] RêGO T V, CADAVAL T R S, DOTTO G L, et al. Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films [J]. Journal of Colloid and Interface Science, 2013, 411: 27-33.
[42] LI C, LOU T, YAN X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal [J]. International Journal of Biological Macromolecules, 2018, 106: 768-74.
[43] CHAO A-C, YU S-H, CHUANG G-S. Using NaCl particles as porogen to prepare a highly adsorbent chitosan membranes [J]. Journal of Membrane Science, 2006, 280(1): 163-74.
[44] WON W, FENG X, LAWLESS D. Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures [J]. Journal of Membrane Science, 2002, 209(2): 493-508.
[45] ANJALI DEVI D, SMITHA B, SRIDHAR S, et al. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes [J]. Journal of Membrane Science, 2005, 262(1): 91-9.
[46] CASTRO-MUñOZ R, GONZáLEZ-VALDEZ J, AHMAD M Z. High-performance pervaporation chitosan-based membranes: new insights and perspectives [J]. Reviews in Chemical Engineering, 2021, 37(8): 959-74.
[47] GE J, CUI Y, YAN Y, et al. The effect of structure on pervaporation of chitosan membrane [J]. Journal of Membrane Science, 2000, 165(1): 75-81.
[48] ZHANG W, YU Z, QIAN Q, et al. Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure [J]. Journal of Membrane Science, 2010, 348(1): 213-23.
[49] YANG B, GU K, WANG S, et al. Chitosan nanofiltration membranes with gradient cross-linking and improved mechanical performance for the removal of divalent salts and heavy metal ions [J]. Desalination, 2021, 516: 115200.
[50] ZIELIŃSKA K, KUJAWSKI W, CHOSTENKO A G. Chitosan hydrogel membranes for pervaporative dehydration of alcohols [J]. Sep Purif Technol, 2011, 83: 114-20.
[51] CAO Y, ZHANG Y, ZHANG Y, et al. Biodegradable functional chitosan membrane for enhancement of artemisinin purification [J]. Carbohydrate Polymers, 2020, 246: 116590.
[52] ALIABADI M, IRANI M, ISMAEILI J, et al. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution [J]. Chemical Engineering Journal, 2013, 220: 237-43.
[53] PRASAD N S, MOULIK S, BOHRA S, et al. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures [J]. Carbohydrate Polymers, 2016, 136: 1170-81.
[54] ELIZALDE C N B, AL-GHARABLI S, KUJAWA J, et al. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance [J]. Interactions of metal ions with chitosan-based sorbents, 2018, 190: 68-76.
[55] MARTINS J G, DE OLIVEIRA A C, GARCIA P S, et al. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties [J]. Carbohydrate Polymers, 2018, 188: 136-42.
[56] HE M, CHEN H, ZHANG X, et al. Construction of novel cellulose/chitosan composite hydrogels and films and their applications [J]. Cellulose, 2018, 25(3): 1987-96.
[57] XU J, FENG X, GAO C. Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance [J]. Journal of Membrane Science, 2011, 370(1-2): 116-23.
[58] RAVAL H D, RANA P S, MAITI S. A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment [J]. RSC Advances, 2015, 5(9): 6687-94.
[59] BORIBUTH S, CHANACHAI A, JIRARATANANON R. Modification of PVDF membrane by chitosan solution for reducing protein fouling [J]. Journal of Membrane Science, 2009, 342(1): 97-104.
[60] WITTE P V D, DIJKSTRA P J, BERG J W A V D, et al. Phase separation processes in polymer solutions in relation to membrane formation [J]. Journal of Membrane Science, 1996, 117(117): 1-31.
[61] STRATHMANN H, SCHEIBLE P, BAKER R W. A rationale for the preparation of LoebSourirajan-type cellulose acetate membranes [J]. Journal of Applied Polymer Science, 1971, 15(4): 811-28.
[62]FIGOLI A, MARINO T, SIMONE S, et al. Towards non-toxic solvents for membrane preparation: a review [J]. Green Chemistry, 2014, 16(9): 4034-59.
[63] WANG H H, JUNG J T, KIM J F, et al. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS) [J]. Journal of Membrane Science, 2019, 574: 44-54.
[64] BAIG M I, DURMAZ E N, WILLOTT J D, et al. Sustainable membrane production through polyelectrolyte complexation induced aqueous phase separation [J]. Advanced Functional Materials, 2019, 30(5): 1907344.
[65] BAIG M I, WILLOTT J D, DE VOS W M. Tuning the structure and performance of polyelectrolyte complexation based aqueous phase separation membranes [J]. Journal of Membrane Science, 2020, 615: 118502.
[66] DURMAZ E N, BAIG M I, WILLOTT J D, et al. Polyelectrolyte complex membranes via salinity change induced aqueous phase separation [J]. ACS Applied Polymer Materials, 2020, 2(7): 2612-21.
[67] DURMAZ E N, WILLOTT J D, FATIMA A, et al. Weak polyanion and strong polycation complex based membranes: linking aqueous phase separation to traditional membrane fabrication [J]. European Polymer Journal, 2020, 139: 110015.
[68] NIELEN W M, WILLOTT J D, ESGUERRA Z M, et al. Ion specific effects on aqueous phase separation of responsive copolymers for sustainable membranes [J]. Journal of Colloid and Interface Science, 2020, 576: 186-94.
[69] WILLOTT J D, NIELEN W M, DE VOS W M. Stimuli-responsive membranes through sustainable aqueous phase separation [J]. ACS Applied Polymer Materials, 2020, 2(2): 659-67.
[70] BAIG M I, SARI P P I, LI J, et al. Sustainable aqueous phase separation membranes prepared through mild pH shift induced polyelectrolyte complexation of PSS and PEI [J]. Journal of Membrane Science, 2021, 625: 119114.
[71] NIELEN W M, WILLOTT J D, DE VOS W M. Aqueous phase separation of responsive copolymers for sustainable and mechanically stable membranes [J]. ACS Applied Polymer Materials, 2020, 2(4): 1702-10.
[72] ZHENG Q-Z, WANG P, YANG Y-N, et al. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane [J]. Journal of Membrane Science, 2006, 286(1): 7-11.
[73] STRATHMANN H, KOCK K. The formation mechanism of phase inversion membranes [J]. Desalination, 1977, 21(3): 241-55.
[74] GUILLEN G R, PAN Y, LI M, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review [J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-817.
[75] YOUNG T-H, CHEN L-W. Pore formation mechanism of membranes from phase inversion process [J]. Desalination, 1995, 103(3): 233-47.
[76] ZHANG S, LI F, YU J. Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system [J]. Cellulose Chemistry and Technology, 2011, 45(9): 593-604.
[77] YONG S K, HYO J K, UN Y K. Asymmetric membrane formation via immersion precipitation method. Ⅰ. kinetic effect [J]. Journal of Membrane Science, 1991, 60: 219-32.
[78] CHUN K-Y, JANG S-H, KIM H-S, et al. Effects of solvent on the pore formation in asymmetric 6FDA–4,4′ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors [J]. Journal of Membrane Science, 2000, 169(2): 197-214.
[79] KANG J S, LEE Y M. Effects of molecular weight of polyvinylpyrrolidone on precipitation kinetics during the formation of asymmetric polyacrylonitrile membrane [J]. Journal of Applied Polymer Science, 2002, 85(1): 57-68.
[80] MAO Y, ZHOU J, CAI J, et al. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution [J]. Journal of Membrane Science, 2006, 279(1): 246-55.
[81] SHI S, LIU X, LI W, et al. Tuning the biodegradability of chitosan membranes: characterization and conceptual design [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14484-92.
[82] KOENHEN D M, MULDER M H V, SMOLDERS C A. Phase separation phenomena during the formation of asymmetric membranes [J]. Journal of Applied Polymer Science, 1977, 21(1): 199-215.
[83] YAO C W, BURFORD R P, FANE A G, et al. Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides [J]. Journal of Membrane Science, 1988, 38(2): 113-25.
[84] KIM H J, TYAGI R K, FOUDA A E, et al. The kinetic study for asymmetric membrane formation via phase‐inversion process [J]. Journal of Applied Polymer Science, 1996, 62(4): 621-9.
[85] HUNG W-L, WANG D-M, LAI J-Y, et al. On the initiation of macrovoids in polymeric membranes – effect of polymer chain entanglement [J]. Journal of Membrane Science, 2016, 505: 70-81.
[86] QIN P, CHEN C, HAN B, et al. Preparation of poly(phthalazinone ether sulfone ketone) asymmetric ultrafiltration membrane [J]. Journal of Membrane Science, 2006, 268(2): 181-8.
[87] GUILLEN G R, RAMON G Z, KAVEHPOUR H P, et al. Direct microscopic observation of membrane formation by nonsolvent induced phase separation [J]. Journal of Membrane Science, 2013, 431: 212-20.
[88] KNAUL J Z, CREBER K A M. Coagulation rate studies of spinnable chitosan solutions [J]. Journal of Applied Polymer Science, 1997, 66(1): 117-27.
[89] MACHADO P S T, HABERT A C, BORGES C P. Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes [J]. Journal of Membrane Science, 1999, 155(2): 171-83.
[90] LAITY P R, GLOVER P M, BARRY A, et al. Studies of non-solvent induced polymer coagulation by magnetic resonance imaging [J]. Polymer, 2001, 42(18): 7701-10.
[91] LAITY P R, GLOVER P M, HAY J N. Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose [J]. Polymer, 2002, 43(22): 5827-37.
[92] KOBAYASHI K, KIMURA S, TOGAWA E, et al. Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction [J]. Carbohydrate Polymers, 2011, 83(2): 483-8.
[93] ISOBE N, KIMURA S, WADA M, et al. Mechanism of cellulose gelation from aqueous alkaliurea solution [J]. Carbohydrate Polymers, 2012, 89(4): 1298-300.
[94] WANG Y-N, WEI J, SHE Q, et al. Microscopic characterization of FO/PRO membranes – a comparative study of CLSM, TEM and SEM [J]. Environmental Science & Technology, 2012, 46(18): 9995-10003.
[95] WANG Z, NIE J, QIN W, et al. Gelation process visualized by aggregation-induced emission fluorogens [J]. Nature Communications, 2016, 7: 12033.
[96] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-81.
[97] FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography -principles and applications [J]. Reports on Progress in Physics, 2003, 66(2): 239-303.
[98] PODOLEANU A G. Optical coherence tomography [J]. The British Journal of Radiology, 2005, 78(935): 976-88.
[99] WOJTKOWSKI M. High-speed optical coherence tomography: basics and applications [J]. Applied Optics, 2010, 49(16): D30-D61.
[100]TOMLINS P H, WANG R K. Theory, developments and applications of optical coherence tomography [J]. Journal of Physics D: Applied Physics, 2005, 38(15): 2519-35.
[101]GAO Y, HAAVISTO S, TANG C Y, et al. Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography [J]. Journal of Membrane Science, 2013, 448: 198-208.
[102]GAO Y, HAAVISTO S, LI W, et al. Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography [J]. Environmental Science & Technology, 2014, 48(24): 14273-81.
[103]LI W, LIU X, WANG Y-N, et al. Analyzing the evolution of membrane fouling via a novel method based on 3D optical coherence tomography imaging [J]. Environmental Science & Technology, 2016, 50(13): 6930-9.
[104]LIU X, LI W, CHONG T H, et al. Effects of spacer orientations on the cake formation during membrane fouling: quantitative analysis based on 3D OCT imaging [J]. Water Research, 2017, 110: 1-14.
[105]DRESZER C, WEXLER A D, DRUSOVA S, et al. In-situ biofilm characterization in membrane systems using optical coherence tomography: formation, structure, detachment and impact of flux change [J]. Water Research, 2014, 67: 243-54.
[106]LEE J-G, JANG Y, FORTUNATO L, et al. An advanced online monitoring approach to study the scaling behavior in direct contact membrane distillation [J]. Journal of Membrane Science, 2018, 546: 50-60.
[107]LI W, LIU X, LI Z, et al. Unraveling the film‐formation kinetics of interfacial polymerization via low coherence interferometry [J]. AIChE Journal, 2019: 16863.
[108]KRANTZ W B, BILODEAU R R, VOORHEES M E, et al. Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator [J]. Journal of Membrane Science, 1997, 124(2): 283-99.
[109]RUPIASIH N N, SUMADIYASA M, PUTRA I K. The effect of variations in the ratio of matrix/solvent on the physical and mechanical properties of chitosan biopolymer membranes [J]. IOP Conference Series: Materials Science and Engineering, 2017, 196: 012039.
[110]LIU J, WANG Y, LI Z, et al. Flux decline induced by scaling of calcium sulfate in membrane distillation: theoretical analysis on the role of different mechanisms [J]. Journal of Membrane Science, 2021, 628: 119257.
[111]LIU J, LI Z, WANG Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Research, 2021, 191: 116809.
[112]CLAVEAU R, MONTGOMERY P, FLURY M, et al. Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography [J]. Optics Express, 2017, 25(17): 20216-32.
[113]MUELLER K F. Periodic interfacial precipitation in polymer films [J]. Science, 1984, 225(4666): 1021-7.
[114]SASAKI K, ITATANI M, SATO D, et al. Interplay between spinodal decomposition and gelation and their role in two- and three-dimensional pattern formation at the gelatin gel surface [J]. The Journal of Physical Chemistry C, 2019, 123(22): 13782-8.
[115]JIANG J, SAKURAI K. Formation of ultrathin Liesegang patterns [J]. Langmuir, 2016, 32(36): 9126-34.
[116]SHIMIZU Y, MATSUI J, UNOURA K, et al. Liesegang mechanism with a gradual phase transition [J]. The Journal of Physical Chemistry B, 2017, 121(11): 2495-501.
[117]LAGZI I, UEYAMA D. Pattern transition between periodic Liesegang pattern and crystal growth regime in reaction–diffusion systems [J]. Chemical Physics Letters, 2009, 468(4): 188-92.
[118]LAGZI I, KOWALCZYK B, GRZYBOWSKI B A. Liesegang rings engineered from charged nanoparticles [J]. Journal of the American Chemical Society, 2010, 132(1): 58-60.
[119]LAGZI I. Formation of Liesegang patterns in an electric field [J]. Physical Chemistry Chemical Physics, 2002, 4(8): 1268-70.
[120]NABIKA H, ITATANI M, LAGZI I. Pattern formation in precipitation reactions: the Liesegang phenomenon [J]. Langmuir, 2020, 36(2): 481-97.
[121]ISOBE N, NOGUCHI K, NISHIYAMA Y, et al. Role of urea in alkaline dissolution of cellulose [J]. Cellulose, 2013, 20(1): 97-103.
[122]MEDRONHO B, LINDMAN B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms [J]. Advances in Colloid and Interface Science, 2015, 222: 502-8.
[123]LLOYD D R, KIM S S, KINZER K E. Microporous membrane formation via thermally-induced phase separation. II. liquid—liquid phase separation [J]. Journal of Membrane Science, 1991, 64(1): 1-11.
[124]HOPP-HIRSCHLER M, NIEKEN U. Modeling of pore formation in phase inversion processes: model and numerical results [J]. Journal of Membrane Science, 2018, 564: 820-31.
[125]CAHN J W. Phase separation by spinodal decomposition in isotropic systems [J]. The Journal of Chemical Physics, 1965, 42(1): 93-9.
[126]NUNES S P, INOUE T. Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation [J]. Journal of Membrane Science, 1996, 111(1): 93-103.
[127]LI W, GAO Y, TANG C Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: model development and theoretical analysis with FEM [J]. Journal of Membrane Science, 2011, 379(1): 307-21.
[128]GONZáLEZ FLECHA F L, LEVI V. Determination of the molecular size of BSA by fluorescence anisotropy [J]. Biochemistry and Molecular Biology Education, 2003, 31(5): 319-22.
[129]KAPUR V, CHARKOUDIAN J, ANDERSON J L. Transport of proteins through gel-filled porous membranes [J]. Journal of Membrane Science, 1997, 131(1): 143-53.
[130]YOSHIDA H, KATAOKA T. Adsorption of BSA on cross-linked chitosan: the equilibrium isotherm [J]. The Chemical Engineering Journal, 1989, 41(1): B11-B5.
[131]JONES K L, O’MELIA C R. Ultrafiltration of protein and humic substances: effect of solution chemistry on fouling and flux decline [J]. Journal of Membrane Science, 2001, 193(2): 163-73.
[132]MO H, TAY K G, NG H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature [J]. Journal of Membrane Science, 2008, 315(1): 28-35.
[133]PEKNY M R, ZARTMAN J, KRANTZ W B, et al. Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes [J]. Journal of Membrane Science, 2003, 211(1): 71-90.
[134]GUO H-F, LAXMINARAYAN A, CANEBA G T, et al. Morphological studies of late-stage spinodal decomposition in polystyrene–cyclohexanol system [J]. Journal of Applied Polymer Science, 1995, 55(5): 753-9.
[135]WEI P, HUANG J, LU Y, et al. Unique stress whitening and high-toughness double-cross-linked cellulose films [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1707-17.
[136]KIENZLE-STERZER C A, RODRIGUEZ-SANCHEZ D, RHA C. Mechanical properties of chitosan films: effect of solvent acid [J]. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1982, 183(5): 1353-9.
[137]TUNG K-L, CHANG K-S, WU T-T, et al. Recent advances in the characterization of membrane morphology [J]. Current Opinion in Chemical Engineering, 2014, 4: 121-7.
[138]KAPPERT E J, RAAIJMAKERS M J T, TEMPELMAN K, et al. Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: a comprehensive dataset [J]. Journal of Membrane Science, 2019, 569: 177-99.
[139]CHEN R H, LIN J H, YANG M H. Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films [J]. Carbohydrate Polymers, 1994, 24(1): 41-6.
[140]IRITANI E, KATAGIRI N, TADAMA T, et al. Analysis of clogging behaviors of diatomaceous ceramic membranes during membrane filtration based upon specific deposit [J]. AIChE Journal, 2010, 56(7): 1748-58.
[141]LI W, DUCLOS-ORSELLO C, HO C-C. Theoretical analysis of the effects of asymmetric membrane structure on fouling during microfiltration [J]. AIChE Journal, 2009, 55(6): 1434-46.
[142]HO C-C, ZYDNEY A L. Theoretical analysis of the effect of membrane morphology on fouling during microfiltration [J]. Separation Science and Technology, 1999, 34(13): 2461-83.
[143]DUCLOS-ORSELLO C, LI W, HO C-C. A three mechanism model to describe fouling of microfiltration membranes [J]. Journal of Membrane Science, 2006, 280(1): 856-66.
[144]TRINH T A, LI W, CHEW J W. Internal fouling during microfiltration with foulants of different surface charges [J]. Journal of Membrane Science, 2020, 602: 117983.
[145]HAN Q, TRINH T A, TANIS-KANBUR M B, et al. Assessing internal fouling during microfiltration using optical coherence tomography and evapoporometry [J]. Journal of Membrane Science, 2020, 595: 117588.
[146]LIU X, CHEN G, TU G, et al. Membrane fouling by clay suspensions during NF-like forward osmosis: characterization via optical coherence tomography [J]. Journal of Membrane Science, 2020, 602: 117965.
修改评论