中文版 | English
题名

壳聚糖分离膜的制备研究:基于凝胶动力学解析的性能优化

其他题名
FABRICATION OF CHITOSAN MEMBRANES: RESOLVING GELATION KINETICS TO OPTIMIZE THE PERFORMANCE
姓名
姓名拼音
TU Guoquan
学号
11930294
学位类型
硕士
学位专业
070305 高分子化学与物理
学科门类/专业学位类别
07 理学
导师
李炜怡
导师单位
环境科学与工程学院
论文答辩日期
2022-05-08
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

生物聚合物由于具有生物相容性和可生物降解性等特性,对于环境友好型分离膜的开发具有重要意义。然而,目前对于以调控分离膜结构为目的的生物聚合物凝胶机理解读仍不够充分。因此,本研究致力于探索新的表征方法以揭示溶解在不同水溶液中的壳聚糖的凝胶动力学,为优化壳聚糖分离膜过滤性能提供关键依据。

本研究通过将微型凝胶装置与光学相干断层成像技术(optical coherence tomographyOCT)相集成,由于OCT在横向和深度方向上均具有微米级分辨率,成功实现了对多种壳聚糖铸膜液凝胶过程的原位表征。除了通过OCT数据集重构凝胶过程的剖面图像外,本研究还基于平行于载玻片-铸膜液界面的各坐标面计算面平均强度和正异常点份率,并以此量化分析了壳聚糖凝胶动力学。凝胶表征结果揭示了,壳聚糖的凝胶速率与凝胶抑制剂(gelation inhibitorsGIs)的移除密切相关,而壳聚糖链的扩散和固化之间存在周期性的竞争(即Liesegang现象)。值得注意的是,针对溶解在碱/尿素水溶液中的壳聚糖的研究表明,由该碱溶法制备的壳聚糖铸膜液的凝胶化速率可以通过改变凝胶浴中的碱度进行更有效的调控。进一步的对比研究揭示了,溶解在酸性水溶液中的壳聚糖的凝胶化可以通过中和GIs(即质子化的氨基)来诱导,且凝胶速度相对更快。这一比较研究还表明,通过改变去除GIs的方式可以显著改变分离膜的不对称性和孔隙连通度,进而导致不同的水渗透性和对颗粒物的截留行为。本研究通过在水溶液相分离(aqueous phase separationAPS)的框架内对表征结果进行深入解读,以建立不同分离膜结构与过滤性能之间的关联。

其他摘要

Biopolymers are of valuable importance for developing environmentally friendly membranes primarily owing to their biocompatible and biodegradable nature. However, mechanisms accounting for the gelation of biopolymers have not been fully understood in the context of regulating the membrane structures. Therefore, this study was aimed at exploring novel characterization methods to resolve the film-formation kinetics of chitosan dissolved in various aqueous solutions, which would be a key to optimizing the filtration performance of chitosan membranes.

Gelation processes of various chitosan dopes were successfully in-situ characterized by integrating a mini-coagulation bath with a system of optical coherence tomography (OCT), which enabled a micron resolution in both the lateral and depth directions. In addition to creating tomographic images from the OCT datasets, quantitative analysis was implemented by averaging the intensities and evaluating the fraction of positive anomalies on each coordinate surface parallel to the dope-glass interface. It was established by the characterization results that the gelation rate could be dominated by removal of the gelation inhibitors (GIs), while there should be a periodic competition between diffusion and solidification of the chitosan chains (i.e., the Liesegang phenomenon). Of special concern is the dissolution of chitosan in an alkali/urea aqueous solution; it was revealed that gelation rate of the alkaline dope could be more effectively regulated by varying the concentration of the alkali in the coagulation bath. A comparative study was implemented to demonstrate that gelation of chitosan dissolved in an acidic aqueous solution could be induced by neutralizing the GIs (i.e., the protonated amino groups) a relatively fast rate. The comparison also indicated that the asymmetry and pore connectivity could be significantly changed by varying the way of removing the GIs, thereby resulting in different water permeability and rejection behavior of particulate species. All the characterization results were rationalized in the framework of aqueous phase separation (APS) to correlate the varied membrane structures with the filtration performance of chitosan membranes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] MASON E A. From pig bladders and cracked jars to polysulfones: an historical perspective on membrane transport [J]. Journal of Membrane Science, 1991, 60(2): 125-45.
[2] LONSDALE H K. The growth of membrane technology [J]. Journal of Membrane Science, 1982, 10(2): 81-181.
[3] LOEB S, SOURIRAJAN S. Sea water demineralization by means of an osmotic membrane [M]. Saline Water Conversion—II. American Chemical Society. 1963: 117-32.
[4] GALIANO F, BRICEñO K, MARINO T, et al. Advances in biopolymer-based membrane preparation and applications [J]. Journal of Membrane Science, 2018, 564: 562-86.
[5] NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes [J]. Journal of Membrane Science, 2020, 598.
[6] HENIS J M S, TRIPODI M K. Composite hollow fiber membranes for gas separation: the resistance model approach [J]. Journal of Membrane Science, 1981, 8(3): 233-46.
[7] TUSEL G F, BRüSCHKE H E A. Use of pervaporation systems in the chemical industry [J]. Desalination, 1985, 53(1): 327-38.
[8] KHAYET M. Membranes and theoretical modeling of membrane distillation: a review [J]. Advances in Colloid and Interface Science, 2011, 164(1): 56-88.
[9] MCCAFFREY R R, MCATEE R E, GREY A E, et al. Inorganic membrane technology [J]. Separation Science and Technology, 1987, 22(2-3): 873-87.
[10] DEIBERT W, IVANOVA M E, BAUMANN S, et al. Ion-conducting ceramic membrane reactors for high-temperature applications [J]. Journal of Membrane Science, 2017, 543: 79-97.
[11] YUN S, TED OYAMA S. Correlations in palladium membranes for hydrogen separation: a review [J]. Journal of Membrane Science, 2011, 375(1): 28-45.
[12] YADAV P, ISMAIL N, ESSALHI M, et al. Assessment of the environmental impact of polymeric membrane production [J]. Journal of Membrane Science, 2021, 622: 118987.
[13] LAWLER W, BRADFORD-HARTKE Z, CRAN M, et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes [J]. Desalination, 2012, 299: 103-12.
[14] XIE W, LI T, TIRAFERRI A, et al. Toward the next generation of sustainable membranes from green chemistry principles [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 50-75.
[15] MORIYA A, MARUYAMA T, OHMUKAI Y, et al. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods [J]. Journal of Membrane Science, 2009, 342(1): 307-12.
[16] DASARI A, QUIRóS J, HERRERO B, et al. Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles [J]. Journal of Membrane Science, 2012, 405-406: 134-40.
[17] LI S, WANG X, GUO Y, et al. Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: a review [J]. Journal of Cleaner Production, 2022, 333: 130171.
[18] MANSOORI S, DAVARNEJAD R, MATSUURA T, et al. Membranes based on non-synthetic (natural) polymers for wastewater treatment [J]. Polymer Testing, 2020, 84: 106381.
[19] RINAUDO M. Chitin and chitosan: properties and applications [J]. Progress in Polymer Science, 2006, 31(7): 603-32.
[20] KURITA K. Chitin and chitosan: functional biopolymers from marine crustaceans [J]. Marine Biotechnology, 2006, 8(3): 203-26.
[21] RAVI KUMAR M N V. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers, 2000, 46(1): 1-27.
[22] PILLAI C K S, PAUL W, SHARMA C P. Chitin and chitosan polymers: chemistry, solubility and fiber formation [J]. Progress in Polymer Science, 2009, 34(7): 641-78.
[23] FANG Y, ZHANG R, DUAN B, et al. Recyclable universal solvents for chitin to chitosan with various degrees of acetylation and construction of robust hydrogels [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2725-33.
[24] DUAN J, LIANG X, CAO Y, et al. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture [J]. Macromolecules, 2015, 48(8): 2706-14.
[25] FANG Y, DUAN B, LU A, et al. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution [J]. Biomacromolecules, 2015, 16(4): 1410-7.
[26] XU D, HEIN S, WANG K. Chitosan membrane in separation applications [J]. Materials Science and Technology, 2008, 24(9): 1076-87.
[27] JAFARI SANJARI A, ASGHARI M. A review on chitosan utilization in membrane synthesis [J]. ChemBioEng Reviews, 2016, 3(3): 134-58.
[28] THAKUR V K, VOICU S I. Recent advances in cellulose and chitosan based membranes for water purification: a concise review [J]. Carbohydrate Polymers, 2016, 146: 148-65.
[29] ITO A, SATO M, ANMA T. Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas [J]. Die Angewandte Makromolekulare Chemie, 1997, 248(1): 85-94.
[30] BORGOHAIN R. Perspectives for chitosan-based membranes in CO2/N2 separation : structure-property relationship [J]. Greenhouse Gases: Science and Technology, 2021, 11(2): 394-408.
[31] URAGAMI T, SAITO T, MIYATA T. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes [J]. Carbohydrate Polymers, 2015, 120: 1-6.
[32] SALEHI E, DARAEI P, ARABI SHAMSABADI A. A review on chitosan-based adsorptive membranes [J]. Carbohydrate Polymers, 2016, 152: 419-32.
[33] VEDULA S S, YADAV G D. Chitosan-based membranes preparation and applications: challenges and opportunities [J]. Journal of the Indian Chemical Society, 2021, 98(2): 100017.
[34] GUIBAL E. Interactions of metal ions with chitosan-based sorbents: a review [J]. Sep Purif Technol, 2004, 38(1): 43-74.
[35] GUIBAL E, VINCENT T, NAVARRO R. Metal ion biosorption on chitosan for the synthesis of advanced materials [J]. Journal of Materials Science, 2014, 49(16): 5505-18.
[36] ZHANG L, ZENG Y, CHENG Z. Removal of heavy metal ions using chitosan and modified chitosan: a review [J]. Journal of Molecular Liquids, 2016, 214: 175-91.
[37] GHAEE A, SHARIATY-NIASSAR M, BARZIN J, et al. Effects of chitosan membrane morphology on copper ion adsorption [J]. Chemical Engineering Journal, 2010, 165(1): 46-55.
[38] BEPPU M M, ARRUDA E J, VIEIRA R S, et al. Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine [J]. Journal of Membrane Science, 2004, 240(1): 227-35.
[39] VIEIRA R S, BEPPU M M. Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres [J]. Water Research, 2006, 40(8): 1726-34.
[40] KAMIŃSKI W, MODRZEJEWSKA Z. Application of chitosan membranes in separation of heavy metal ions [J]. Separation Science and Technology, 1997, 32(16): 2659-68.
[41] RêGO T V, CADAVAL T R S, DOTTO G L, et al. Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films [J]. Journal of Colloid and Interface Science, 2013, 411: 27-33.
[42] LI C, LOU T, YAN X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal [J]. International Journal of Biological Macromolecules, 2018, 106: 768-74.
[43] CHAO A-C, YU S-H, CHUANG G-S. Using NaCl particles as porogen to prepare a highly adsorbent chitosan membranes [J]. Journal of Membrane Science, 2006, 280(1): 163-74.
[44] WON W, FENG X, LAWLESS D. Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures [J]. Journal of Membrane Science, 2002, 209(2): 493-508.
[45] ANJALI DEVI D, SMITHA B, SRIDHAR S, et al. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes [J]. Journal of Membrane Science, 2005, 262(1): 91-9.
[46] CASTRO-MUñOZ R, GONZáLEZ-VALDEZ J, AHMAD M Z. High-performance pervaporation chitosan-based membranes: new insights and perspectives [J]. Reviews in Chemical Engineering, 2021, 37(8): 959-74.
[47] GE J, CUI Y, YAN Y, et al. The effect of structure on pervaporation of chitosan membrane [J]. Journal of Membrane Science, 2000, 165(1): 75-81.
[48] ZHANG W, YU Z, QIAN Q, et al. Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure [J]. Journal of Membrane Science, 2010, 348(1): 213-23.
[49] YANG B, GU K, WANG S, et al. Chitosan nanofiltration membranes with gradient cross-linking and improved mechanical performance for the removal of divalent salts and heavy metal ions [J]. Desalination, 2021, 516: 115200.
[50] ZIELIŃSKA K, KUJAWSKI W, CHOSTENKO A G. Chitosan hydrogel membranes for pervaporative dehydration of alcohols [J]. Sep Purif Technol, 2011, 83: 114-20.
[51] CAO Y, ZHANG Y, ZHANG Y, et al. Biodegradable functional chitosan membrane for enhancement of artemisinin purification [J]. Carbohydrate Polymers, 2020, 246: 116590.
[52] ALIABADI M, IRANI M, ISMAEILI J, et al. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution [J]. Chemical Engineering Journal, 2013, 220: 237-43.
[53] PRASAD N S, MOULIK S, BOHRA S, et al. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures [J]. Carbohydrate Polymers, 2016, 136: 1170-81.
[54] ELIZALDE C N B, AL-GHARABLI S, KUJAWA J, et al. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance [J]. Interactions of metal ions with chitosan-based sorbents, 2018, 190: 68-76.
[55] MARTINS J G, DE OLIVEIRA A C, GARCIA P S, et al. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties [J]. Carbohydrate Polymers, 2018, 188: 136-42.
[56] HE M, CHEN H, ZHANG X, et al. Construction of novel cellulose/chitosan composite hydrogels and films and their applications [J]. Cellulose, 2018, 25(3): 1987-96.
[57] XU J, FENG X, GAO C. Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance [J]. Journal of Membrane Science, 2011, 370(1-2): 116-23.
[58] RAVAL H D, RANA P S, MAITI S. A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment [J]. RSC Advances, 2015, 5(9): 6687-94.
[59] BORIBUTH S, CHANACHAI A, JIRARATANANON R. Modification of PVDF membrane by chitosan solution for reducing protein fouling [J]. Journal of Membrane Science, 2009, 342(1): 97-104.
[60] WITTE P V D, DIJKSTRA P J, BERG J W A V D, et al. Phase separation processes in polymer solutions in relation to membrane formation [J]. Journal of Membrane Science, 1996, 117(117): 1-31.
[61] STRATHMANN H, SCHEIBLE P, BAKER R W. A rationale for the preparation of LoebSourirajan-type cellulose acetate membranes [J]. Journal of Applied Polymer Science, 1971, 15(4): 811-28.
[62]FIGOLI A, MARINO T, SIMONE S, et al. Towards non-toxic solvents for membrane preparation: a review [J]. Green Chemistry, 2014, 16(9): 4034-59.
[63] WANG H H, JUNG J T, KIM J F, et al. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS) [J]. Journal of Membrane Science, 2019, 574: 44-54.
[64] BAIG M I, DURMAZ E N, WILLOTT J D, et al. Sustainable membrane production through polyelectrolyte complexation induced aqueous phase separation [J]. Advanced Functional Materials, 2019, 30(5): 1907344.
[65] BAIG M I, WILLOTT J D, DE VOS W M. Tuning the structure and performance of polyelectrolyte complexation based aqueous phase separation membranes [J]. Journal of Membrane Science, 2020, 615: 118502.
[66] DURMAZ E N, BAIG M I, WILLOTT J D, et al. Polyelectrolyte complex membranes via salinity change induced aqueous phase separation [J]. ACS Applied Polymer Materials, 2020, 2(7): 2612-21.
[67] DURMAZ E N, WILLOTT J D, FATIMA A, et al. Weak polyanion and strong polycation complex based membranes: linking aqueous phase separation to traditional membrane fabrication [J]. European Polymer Journal, 2020, 139: 110015.
[68] NIELEN W M, WILLOTT J D, ESGUERRA Z M, et al. Ion specific effects on aqueous phase separation of responsive copolymers for sustainable membranes [J]. Journal of Colloid and Interface Science, 2020, 576: 186-94.
[69] WILLOTT J D, NIELEN W M, DE VOS W M. Stimuli-responsive membranes through sustainable aqueous phase separation [J]. ACS Applied Polymer Materials, 2020, 2(2): 659-67.
[70] BAIG M I, SARI P P I, LI J, et al. Sustainable aqueous phase separation membranes prepared through mild pH shift induced polyelectrolyte complexation of PSS and PEI [J]. Journal of Membrane Science, 2021, 625: 119114.
[71] NIELEN W M, WILLOTT J D, DE VOS W M. Aqueous phase separation of responsive copolymers for sustainable and mechanically stable membranes [J]. ACS Applied Polymer Materials, 2020, 2(4): 1702-10.
[72] ZHENG Q-Z, WANG P, YANG Y-N, et al. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane [J]. Journal of Membrane Science, 2006, 286(1): 7-11.
[73] STRATHMANN H, KOCK K. The formation mechanism of phase inversion membranes [J]. Desalination, 1977, 21(3): 241-55.
[74] GUILLEN G R, PAN Y, LI M, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review [J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-817.
[75] YOUNG T-H, CHEN L-W. Pore formation mechanism of membranes from phase inversion process [J]. Desalination, 1995, 103(3): 233-47.
[76] ZHANG S, LI F, YU J. Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system [J]. Cellulose Chemistry and Technology, 2011, 45(9): 593-604.
[77] YONG S K, HYO J K, UN Y K. Asymmetric membrane formation via immersion precipitation method. Ⅰ. kinetic effect [J]. Journal of Membrane Science, 1991, 60: 219-32.
[78] CHUN K-Y, JANG S-H, KIM H-S, et al. Effects of solvent on the pore formation in asymmetric 6FDA–4,4′ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors [J]. Journal of Membrane Science, 2000, 169(2): 197-214.
[79] KANG J S, LEE Y M. Effects of molecular weight of polyvinylpyrrolidone on precipitation kinetics during the formation of asymmetric polyacrylonitrile membrane [J]. Journal of Applied Polymer Science, 2002, 85(1): 57-68.
[80] MAO Y, ZHOU J, CAI J, et al. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution [J]. Journal of Membrane Science, 2006, 279(1): 246-55.
[81] SHI S, LIU X, LI W, et al. Tuning the biodegradability of chitosan membranes: characterization and conceptual design [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14484-92.
[82] KOENHEN D M, MULDER M H V, SMOLDERS C A. Phase separation phenomena during the formation of asymmetric membranes [J]. Journal of Applied Polymer Science, 1977, 21(1): 199-215.
[83] YAO C W, BURFORD R P, FANE A G, et al. Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides [J]. Journal of Membrane Science, 1988, 38(2): 113-25.
[84] KIM H J, TYAGI R K, FOUDA A E, et al. The kinetic study for asymmetric membrane formation via phase‐inversion process [J]. Journal of Applied Polymer Science, 1996, 62(4): 621-9.
[85] HUNG W-L, WANG D-M, LAI J-Y, et al. On the initiation of macrovoids in polymeric membranes – effect of polymer chain entanglement [J]. Journal of Membrane Science, 2016, 505: 70-81.
[86] QIN P, CHEN C, HAN B, et al. Preparation of poly(phthalazinone ether sulfone ketone) asymmetric ultrafiltration membrane [J]. Journal of Membrane Science, 2006, 268(2): 181-8.
[87] GUILLEN G R, RAMON G Z, KAVEHPOUR H P, et al. Direct microscopic observation of membrane formation by nonsolvent induced phase separation [J]. Journal of Membrane Science, 2013, 431: 212-20.
[88] KNAUL J Z, CREBER K A M. Coagulation rate studies of spinnable chitosan solutions [J]. Journal of Applied Polymer Science, 1997, 66(1): 117-27.
[89] MACHADO P S T, HABERT A C, BORGES C P. Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes [J]. Journal of Membrane Science, 1999, 155(2): 171-83.
[90] LAITY P R, GLOVER P M, BARRY A, et al. Studies of non-solvent induced polymer coagulation by magnetic resonance imaging [J]. Polymer, 2001, 42(18): 7701-10.
[91] LAITY P R, GLOVER P M, HAY J N. Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose [J]. Polymer, 2002, 43(22): 5827-37.
[92] KOBAYASHI K, KIMURA S, TOGAWA E, et al. Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction [J]. Carbohydrate Polymers, 2011, 83(2): 483-8.
[93] ISOBE N, KIMURA S, WADA M, et al. Mechanism of cellulose gelation from aqueous alkaliurea solution [J]. Carbohydrate Polymers, 2012, 89(4): 1298-300.
[94] WANG Y-N, WEI J, SHE Q, et al. Microscopic characterization of FO/PRO membranes – a comparative study of CLSM, TEM and SEM [J]. Environmental Science & Technology, 2012, 46(18): 9995-10003.
[95] WANG Z, NIE J, QIN W, et al. Gelation process visualized by aggregation-induced emission fluorogens [J]. Nature Communications, 2016, 7: 12033.
[96] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-81.
[97] FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography -principles and applications [J]. Reports on Progress in Physics, 2003, 66(2): 239-303.
[98] PODOLEANU A G. Optical coherence tomography [J]. The British Journal of Radiology, 2005, 78(935): 976-88.
[99] WOJTKOWSKI M. High-speed optical coherence tomography: basics and applications [J]. Applied Optics, 2010, 49(16): D30-D61.
[100]TOMLINS P H, WANG R K. Theory, developments and applications of optical coherence tomography [J]. Journal of Physics D: Applied Physics, 2005, 38(15): 2519-35.
[101]GAO Y, HAAVISTO S, TANG C Y, et al. Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography [J]. Journal of Membrane Science, 2013, 448: 198-208.
[102]GAO Y, HAAVISTO S, LI W, et al. Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography [J]. Environmental Science & Technology, 2014, 48(24): 14273-81.
[103]LI W, LIU X, WANG Y-N, et al. Analyzing the evolution of membrane fouling via a novel method based on 3D optical coherence tomography imaging [J]. Environmental Science & Technology, 2016, 50(13): 6930-9.
[104]LIU X, LI W, CHONG T H, et al. Effects of spacer orientations on the cake formation during membrane fouling: quantitative analysis based on 3D OCT imaging [J]. Water Research, 2017, 110: 1-14.
[105]DRESZER C, WEXLER A D, DRUSOVA S, et al. In-situ biofilm characterization in membrane systems using optical coherence tomography: formation, structure, detachment and impact of flux change [J]. Water Research, 2014, 67: 243-54.
[106]LEE J-G, JANG Y, FORTUNATO L, et al. An advanced online monitoring approach to study the scaling behavior in direct contact membrane distillation [J]. Journal of Membrane Science, 2018, 546: 50-60.
[107]LI W, LIU X, LI Z, et al. Unraveling the film‐formation kinetics of interfacial polymerization via low coherence interferometry [J]. AIChE Journal, 2019: 16863.
[108]KRANTZ W B, BILODEAU R R, VOORHEES M E, et al. Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator [J]. Journal of Membrane Science, 1997, 124(2): 283-99.
[109]RUPIASIH N N, SUMADIYASA M, PUTRA I K. The effect of variations in the ratio of matrix/solvent on the physical and mechanical properties of chitosan biopolymer membranes [J]. IOP Conference Series: Materials Science and Engineering, 2017, 196: 012039.
[110]LIU J, WANG Y, LI Z, et al. Flux decline induced by scaling of calcium sulfate in membrane distillation: theoretical analysis on the role of different mechanisms [J]. Journal of Membrane Science, 2021, 628: 119257.
[111]LIU J, LI Z, WANG Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Research, 2021, 191: 116809.
[112]CLAVEAU R, MONTGOMERY P, FLURY M, et al. Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography [J]. Optics Express, 2017, 25(17): 20216-32.
[113]MUELLER K F. Periodic interfacial precipitation in polymer films [J]. Science, 1984, 225(4666): 1021-7.
[114]SASAKI K, ITATANI M, SATO D, et al. Interplay between spinodal decomposition and gelation and their role in two- and three-dimensional pattern formation at the gelatin gel surface [J]. The Journal of Physical Chemistry C, 2019, 123(22): 13782-8.
[115]JIANG J, SAKURAI K. Formation of ultrathin Liesegang patterns [J]. Langmuir, 2016, 32(36): 9126-34.
[116]SHIMIZU Y, MATSUI J, UNOURA K, et al. Liesegang mechanism with a gradual phase transition [J]. The Journal of Physical Chemistry B, 2017, 121(11): 2495-501.
[117]LAGZI I, UEYAMA D. Pattern transition between periodic Liesegang pattern and crystal growth regime in reaction–diffusion systems [J]. Chemical Physics Letters, 2009, 468(4): 188-92.
[118]LAGZI I, KOWALCZYK B, GRZYBOWSKI B A. Liesegang rings engineered from charged nanoparticles [J]. Journal of the American Chemical Society, 2010, 132(1): 58-60.
[119]LAGZI I. Formation of Liesegang patterns in an electric field [J]. Physical Chemistry Chemical Physics, 2002, 4(8): 1268-70.
[120]NABIKA H, ITATANI M, LAGZI I. Pattern formation in precipitation reactions: the Liesegang phenomenon [J]. Langmuir, 2020, 36(2): 481-97.
[121]ISOBE N, NOGUCHI K, NISHIYAMA Y, et al. Role of urea in alkaline dissolution of cellulose [J]. Cellulose, 2013, 20(1): 97-103.
[122]MEDRONHO B, LINDMAN B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms [J]. Advances in Colloid and Interface Science, 2015, 222: 502-8.
[123]LLOYD D R, KIM S S, KINZER K E. Microporous membrane formation via thermally-induced phase separation. II. liquid—liquid phase separation [J]. Journal of Membrane Science, 1991, 64(1): 1-11.
[124]HOPP-HIRSCHLER M, NIEKEN U. Modeling of pore formation in phase inversion processes: model and numerical results [J]. Journal of Membrane Science, 2018, 564: 820-31.
[125]CAHN J W. Phase separation by spinodal decomposition in isotropic systems [J]. The Journal of Chemical Physics, 1965, 42(1): 93-9.
[126]NUNES S P, INOUE T. Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation [J]. Journal of Membrane Science, 1996, 111(1): 93-103.
[127]LI W, GAO Y, TANG C Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: model development and theoretical analysis with FEM [J]. Journal of Membrane Science, 2011, 379(1): 307-21.
[128]GONZáLEZ FLECHA F L, LEVI V. Determination of the molecular size of BSA by fluorescence anisotropy [J]. Biochemistry and Molecular Biology Education, 2003, 31(5): 319-22.
[129]KAPUR V, CHARKOUDIAN J, ANDERSON J L. Transport of proteins through gel-filled porous membranes [J]. Journal of Membrane Science, 1997, 131(1): 143-53.
[130]YOSHIDA H, KATAOKA T. Adsorption of BSA on cross-linked chitosan: the equilibrium isotherm [J]. The Chemical Engineering Journal, 1989, 41(1): B11-B5.
[131]JONES K L, O’MELIA C R. Ultrafiltration of protein and humic substances: effect of solution chemistry on fouling and flux decline [J]. Journal of Membrane Science, 2001, 193(2): 163-73.
[132]MO H, TAY K G, NG H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature [J]. Journal of Membrane Science, 2008, 315(1): 28-35.
[133]PEKNY M R, ZARTMAN J, KRANTZ W B, et al. Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes [J]. Journal of Membrane Science, 2003, 211(1): 71-90.
[134]GUO H-F, LAXMINARAYAN A, CANEBA G T, et al. Morphological studies of late-stage spinodal decomposition in polystyrene–cyclohexanol system [J]. Journal of Applied Polymer Science, 1995, 55(5): 753-9.
[135]WEI P, HUANG J, LU Y, et al. Unique stress whitening and high-toughness double-cross-linked cellulose films [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1707-17.
[136]KIENZLE-STERZER C A, RODRIGUEZ-SANCHEZ D, RHA C. Mechanical properties of chitosan films: effect of solvent acid [J]. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1982, 183(5): 1353-9.
[137]TUNG K-L, CHANG K-S, WU T-T, et al. Recent advances in the characterization of membrane morphology [J]. Current Opinion in Chemical Engineering, 2014, 4: 121-7.
[138]KAPPERT E J, RAAIJMAKERS M J T, TEMPELMAN K, et al. Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: a comprehensive dataset [J]. Journal of Membrane Science, 2019, 569: 177-99.
[139]CHEN R H, LIN J H, YANG M H. Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films [J]. Carbohydrate Polymers, 1994, 24(1): 41-6.
[140]IRITANI E, KATAGIRI N, TADAMA T, et al. Analysis of clogging behaviors of diatomaceous ceramic membranes during membrane filtration based upon specific deposit [J]. AIChE Journal, 2010, 56(7): 1748-58.
[141]LI W, DUCLOS-ORSELLO C, HO C-C. Theoretical analysis of the effects of asymmetric membrane structure on fouling during microfiltration [J]. AIChE Journal, 2009, 55(6): 1434-46.
[142]HO C-C, ZYDNEY A L. Theoretical analysis of the effect of membrane morphology on fouling during microfiltration [J]. Separation Science and Technology, 1999, 34(13): 2461-83.
[143]DUCLOS-ORSELLO C, LI W, HO C-C. A three mechanism model to describe fouling of microfiltration membranes [J]. Journal of Membrane Science, 2006, 280(1): 856-66.
[144]TRINH T A, LI W, CHEW J W. Internal fouling during microfiltration with foulants of different surface charges [J]. Journal of Membrane Science, 2020, 602: 117983.
[145]HAN Q, TRINH T A, TANIS-KANBUR M B, et al. Assessing internal fouling during microfiltration using optical coherence tomography and evapoporometry [J]. Journal of Membrane Science, 2020, 595: 117588.
[146]LIU X, CHEN G, TU G, et al. Membrane fouling by clay suspensions during NF-like forward osmosis: characterization via optical coherence tomography [J]. Journal of Membrane Science, 2020, 602: 117965.

所在学位评定分委会
环境科学与工程学院
国内图书分类号
O636
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335750
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
涂国权. 壳聚糖分离膜的制备研究:基于凝胶动力学解析的性能优化[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930294-涂国权-环境科学与工程(8262KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[涂国权]的文章
百度学术
百度学术中相似的文章
[涂国权]的文章
必应学术
必应学术中相似的文章
[涂国权]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。