中文版 | English
题名

Elucidating Interface Reactions Coupled with Materials Degradation Mechanisms in Li-ion Batteries and Their Remedy by Electrolyte Additives

其他题名
阐明锂离子电池中的界面反应与材料降解机制及其通过电解质添加剂的补救措施
姓名
姓名拼音
ZHAO Huajun
学号
11853006
学位类型
博士
学位专业
应用物理及材料工程
导师
邓永红
导师单位
材料科学与工程系
外机构导师
邵怀宇
外机构导师单位
澳门大学
论文答辩日期
2022-04-27
论文提交日期
2022-06-14
学位授予单位
澳门大学
学位授予地点
澳门
摘要

Lithium-ion batteries (LIBs) have become one of the most prevalent techniques for feasible and fascinating energy storage devices, however, they still face a significant challenge due to gas generation, which has been regarded as one of the fundamental barriers to the reversibility of battery chemistry. Electrolyte additive has been extensively used as an effective and economical practice. However, their selection has been conducted on an Edisonian trial-and-error, with little knowledge about the relationship between their molecular structure and reactivity as well as the electrochemical performance.

Combined with differential electrochemical mass spectrometry (DEMS), this thesis focuses on the gas generation and electrolyte decomposition mechanism as well as the remedy approaches by electrolyte additives.

Firstly, a DEMS is constructed to differentiate the speciation and source of each gas product in Li-metal batteries. It convincingly identifies that the active oxygen release from the layer structured LiNixCoyMnzO2 (NCM) as the source of instability.

Secondly, tripropyl phosphate (TPPC1), triallyl phosphate (TPPC2), and tripropargyl phosphate (TPPC3) are introduced with the purpose of revealing the structure-property relationship in LiNi0.8Co0.1Mn0.1O2 (NCM811)/artificial graphite (AG) pouch cells. It is found that the effectiveness of TPPC1, TPPC2, and TPPC3 in preventing gas generation and resistance growth as well as improving cycling performance can be described as TPPC3 > TPPC2 > TPPC1.

Thirdly, advanced carbonate-based electrolyte formulation containing vinylene carbonate (VC) and TPPC2/TPPC3 are reported to improve the high temperature performance of NCM811/AG pouch cells. Results reveal that TPPC2+VC and TPPC3+VC can well regulate the electrodes interface with more robust and homogenous films.

Finally, 1,3,2-dioxathiolane-2,2-dioxide (DTD), 4-methyl-1,3,2-dioxathiolane-2,2-dioxide (MDTD) and 4-propyl-[1,3,2] dioxathiolane-2,2-dioxide (PDTD) are introduced to build a robust interphase for NCM811AG pouch cells. As a result, DTD yields a more stable interphase due to more sulfates species can be produced in the interphase for the inchoate cycles, yielding a more cycling stability. However, PDTD outperforms the others after 950 cycles, only in which can sulfate species be detected on both of the cathode and anode.

The present research work will doubtlessly construct the principal foundation for the rational design of new electrolyte components for future battery chemistry.

其他摘要

锂离子电池(LIB)已成为可行且引人入胜的储能装置最流行技术之一,然而,由于气体的产生,它们仍然面临着重大挑战,被认为是电池化学可逆性的基本障碍之一。电解质添加剂已被广泛用作一种有效且经济的做法。然而,它们的选择是在爱迪生式的反复试验中进行的,对它们的分子结构和反应性以及电化学性能之间的关系知之甚少。

本论文结合微分电化学质谱(DEMS),重点研究了气体的产生和电解液分解机理以及采用电解液添加剂作为补救措施。

首先,构建了DEMS系统,以区分锂金属电池中每种气体产物的形态和来源。它令人信服地确定,从层状结构的LiNixCoyMnzO2(NCM) 释放的活性氧是不稳定性的来源。

其次,引入了磷酸三丙酯(TPPC1)、磷酸三烯丙酯(TPPC2)和磷酸三炔丙酯(TPPC3),旨在揭示其用于NCM811/ AG软包电池中应用时的结构与性能的关系。 研究发现, TPPC1TPPC2以及TPPC3 在防止气体产生,抑制电阻增长以及改善电池循环性能方面表现为 TPPC3 > TPPC2 > TPPC1

第三,报道了基于碳酸亚乙烯酯 (VC) TPPC2/TPPC3的碳酸酯电解质配方,可改善 NCM811/AG 软包电池的高温性能。结果表明,TPPC2+VCTPPC3+VC可以很好地调节电极界面,形成更坚固、更均匀的薄膜。

最后,引入DTDMDTDPDTD添加剂,用于为 NCM811/AG软包电池构建坚固的界面膜。结果表明,DTD 在循环早期产生的界面膜更稳定,因为其中含有更多的硫酸盐物质,从而使电池具有更优异的循环稳定性。然而,PDTD950次循环后优于其他电解液体系,只有在PDTD系统中才能同时在正极和负极表面上检测到硫酸盐物种。

目前的研究工作无疑将为未来电池化学新型电解质成分的合理设计奠定主要基础。

关键词
其他关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2022-06
参考文献列表

[(1) Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30 (33), 1800561.(2) Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; Zheng, Y.; Amanchukwu, C. V.; Hung, S. T.; Ma, Y.; Lomeli, E. G.; Qin, J.; Cui, Y.; Bao, Z. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries. Nature Energy 2020, 5 (7), 526-533.(3) Qian, Y. X. The Effect of Electrolyte Additives in Improving the SEI and CEI in Lithium Ion Batteries. Institut für Physikalische Chemie MEET Batterieforschungszentrum, Germany, 2016.(4) Tarascon, J. M.; Armand, M. Issues And Challenges Facing Rechargeable Lithium Batteries. In Mater. Renew. Sustain.; 2010; pp 171-179.(5) Armand, M.; Tarascon, J. M. Building Better Batteries. Nature 2008, 451 (7179), 652-657.(6) Zhao, H. J.; Yu, X. Q.; Li, J. D.; Li, B.; Shao, H. Y.; Li, L.; Deng, Y. H. Film-Forming Electrolyte Additives for Rechargeable Lithium-Ion Batteries: Progress and Outlook. J. Mater. Chem. A 2019, 7 (15), 8700-8722.(7) Andre, D.; Kim, S. J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future Generations of Cathode Materials: an Automotive Industry Perspective. J. Mater. Chem. A 2015, 3 (13), 6709-6732.(8) Metzger, M. Studies on Fundamental Materials Degradation Mechanisms in Lithium-ion Batteries via On-line Electrochemical Mass Spectrometry. Universität München, 2017.(9) Van Noorden, R. The Rechargeable Revolution: A Better Battery. Nature 2014, 507 (7490), 26-28.(10) Xu, N.; Shi, J.; Liu, G.; Yang, X.; Zheng, J.; Zhang, Z.; Yang, Y. Research Progress of Fluorine-Containing Electrolyte Additives for Lithium Ion Batteries. J. Power Sources Adv. 2021, 7, 100043.(11) Wang, X. T.; Gu, Z. Y.; Li, W. H.; Zhao, X. X.; Guo, J. Z.; Du, K. D.; Luo, X. X.; Wu, X. L. Regulation of Cathode-Electrolyte Interphase via Electrolyte Additives in Lithium-Ion Batteries. Chem. Asian J. 2020, 15 (18), 2803-2814.(12) Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New Concepts in Electrolytes. Chem. Rev. 2020, 120 (14), 6783-6819.(13) Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H. M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small 2019, 15 (32), 1900687.(14) Li, W.; Song, B.; Manthiram, A. High-Voltage Positive Electrode Materials for Lithium-Ion Batteries. Chem. Soc. Rev. 2017, 46 (10), 3006-3059.(15) Eshetu, G. G.; Figgemeier, E. Confronting the Challenges of Next-Generation Silicon Anode-Based Lithium-Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. ChemSusChem 2019, 12 (12), 2515-2539.(16) Manthiram, A.; Song, B. H.; Li, W. D. A Perspective on Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries. Energy Storage Mater. 2017, 6, 125-139.(17) Haridas, A. K.; Nguyen, Q. A.; Terlier, T.; Blaser, R.; Biswal, S. L. Investigating The Compatibility Of Tmsp and FEC Electrolyte Additives for LiNi0.5Mn0.3Co0.2O2 (NMC)-Silicon Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13 (2), 2662-2673.(18) Ma, H.; Hwang, D.; Ahn, Y. J.; Lee, M. Y.; Kim, S.; Lee, Y.; Lee, S. M.; Kwak, S. K.; Choi, N. S. In Situ Interfacial Tuning to Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2020, 12 (26), 29365-29375.(19) Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Appl. Mater. Interfaces 2018, 10 (45), 38892-38899.(20) Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2017, 164 (7), A1361-A1377.(21) Xia, X.; Obrovac, M. N.; Dahn, J. R. Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes. Electrochem. Solid St. 2011, 14 (9), A130-A133.(22) Zhang, S. S. Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries. ACS Appl. Energ. Mater. 2018, 1 (3), 910-920.(23) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403-10473.(24) Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chem. Rev. 2020, 120 (15), 7745-7794.(25) Wang, Q. S.; Jiang, L. H.; Yu, Y.; Sun, J. H. Progress of Enhancing the Safety of Lithium Ion Battery From the Electrolyte Aspect. Nano Energy 2019, 55, 93-114.(26) Yeh, N. H.; Wang, F. M.; Khotimah, C.; Wang, X. C.; Lin, Y. W.; Chang, S. C.; Hsu, C. C.; Chang, Y. J.; Tiong, L.; Liu, C. H.; Lu, Y. R.; Liao, Y. F.; Chang, C. K.; Haw, S. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Lee, J. F.; Chan, T. S.; Sheu, H. S.; Chen, J. M.; Ramar, A.; Su, C. H. Controlling Ni2+ from the Surface to the Bulk by a New Cathode Electrolyte Interphase Formation on a Ni-Rich Layered Cathode in High-Safe and High-Energy-Density Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13 (6), 7355-7369.(27) Strauss, F.; Teo, J. H.; Schiele, A.; Bartsch, T.; Hatsukade, T.; Hartmann, P.; Janek, J.; Brezesinski, T. Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. ACS Appl. Mater. Interfaces 2020, 12 (18), 20462-20468.(28) Galushkin, N. E.; Yazvinskaya, N. N.; Galushkin, D. N. Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. J. Electrochem. Soc. 2019, 166 (6), A897-A908.(29) Klein, F.; Pinedo, R.; Berkes, B. B.; Janek, J.; Adelhelm, P. Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS. J. Phys. Chem. C 2017, 121 (16), 8679-8691.(30) Sharifi‐Asl, S.; Lu, J.; Amine, K.; Shahbazian‐Yassar, R. Oxygen Release Degradation in Li‐Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches. Adv. Energy Mater. 2019, 9 (22), 1900551.(31) Nie, K. H.; Wang, X. L.; Qiu, J. L.; Wang, Y.; Yang, Q.; Xu, J. J.; Yu, X. Q.; Li, H.; Huang, X. J.; Chen, L. Q. Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 2020, 5 (3), 826-832.(32) Tripathi, A. M.; Su, W. N.; Hwang, B. J. In Situ Analytical Techniques for Battery Interface Analysis. Chem. Soc. Rev. 2018, 47 (3), 736-851.(33) Lu, J.; Hua, X.; Long, Y. T. Recent Advances in Real-Time and in Situ Analysis of an Electrode-Electrolyte Interface by Mass Spectrometry. Analyst 2017, 142 (5), 691-699.(34) Zhao, H.; Wang, J.; Shao, H.; Xu, K.; Deng, Y. Gas Generation Mechanism in Li‐Metal Batteries. Energy Environ. Mater. 2022, 5 (1), 327-336.(35) Strauss, F.; Teo, J. H.; Maibach, J.; Kim, A. Y.; Mazilkin, A.; Janek, J.; Brezesinski, T. Li2ZrO3-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. ACS Appl. Mater. Interfaces 2020, 12 (51), 57146-57154.(36) Liu, K.; Zhang, Q.; Dai, S.; Li, W.; Liu, X.; Ding, F.; Zhang, J. Synergistic Effect of F(-) Doping and LiF Coating on Improving the High-Voltage Cycling Stability and Rate Capacity of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (40), 34153-34162.(37) Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martinez, L. M.; Armand, M. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angew Chem. Int. Ed. Engl. 2018, 57 (46), 15002-15027.(38) Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303-4417.(39) Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22 (3), 587-603.(40) Zhang, S. S. A Review on Electrolyte Additives For Lithium-Ion Batteries. J. Power Sources 2006, 162 (2), 1379-1394.(41) von Aspern, N.; Grünebaum, M.; Diddens, D.; Pollard, T.; Wölke, C.; Borodin, O.; Winter, M.; Cekic-Laskovic, I. Methyl-Group Functionalization of Pyrazole-Based Additives for Advanced Lithium Ion Battery Electrolytes. J. Power Sources 2020, 461, 228159.(42) Li, J. H.; Liao, Y. Q.; Fan, W. Z.; Li, Z. F.; Li, G. J.; Zhang, Q. K.; Xing, L. D.; Xu, M. Q.; Li, W. S. Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes. ACS Appl. Energ. Mater. 2020, 3 (3), 3049-3058.(43) Gallus, D. R.; Wagner, R.; Wiemers-Meyer, S.; Winter, M.; Cekic-Laskovic, I. New Insights into the Structure-Property Relationship of High-Voltage Electrolyte Components for Lithium-Ion Batteries Using The pKa Value. Electrochim. Acta 2015, 184, 410-416.(44) Kaiser, M. R.; Chou, S.; Liu, H. K.; Dou, S. X.; Wang, C.; Wang, J. Structure-Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. Adv. Mater. 2017, 29 (48), 1700449.(45) Beltrop, K.; Klein, S.; Nolle, R.; Wilken, A.; Lee, J. J.; Koster, T. K. J.; Reiter, J.; Tao, L.; Liang, C. D.; Winter, M.; Qi, X.; Placke, T. Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion Cells. Chem. Mater. 2018, 30 (8), 2726-2741.(46) von Aspern, N.; Röser, S.; Rad, B. R.; Murmann, P.; Streipert, B.; Mönnighoff, X.; Tillmann, S. D.; Shevchuk, M.; Stubbmann-Kazakova, O.; Röschenthaler, G.-V. Phosphorus Additives for Improving High Voltage Stability and Safety of Lithium Ion Batteries. J. Fluorine Chem. 2017, 198, 24-33.(47) He, M.; Su, C. C.; Peebles, C.; Feng, Z.; Connell, J. G.; Liao, C.; Wang, Y.; Shkrob, I. A.; Zhang, Z. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells. ACS Appl. Mater. Interfaces 2016, 8 (18), 11450-11458.(48) He, M. Elucidating Interface Reactions in Li-Ion Batteries and Supercapacitors by in Situ Gas Analysis. ETH Zurich, 2016.(49) Yoshino, A. The Birth of the Lithium-Ion Battery. Angew Chem. Int. Ed. Engl. 2012, 51 (24), 5798-5800.(50) Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935.(51) Whittingham, M. S. Role of ternary phases in cathode reactions. J. Electrochem. Soc. 1976, 123 (3), 315-320.(52) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335753
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Zhao HJ. Elucidating Interface Reactions Coupled with Materials Degradation Mechanisms in Li-ion Batteries and Their Remedy by Electrolyte Additives[D]. 澳门. 澳门大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11853006-赵华军-材料科学与工程(17372KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵华军]的文章
百度学术
百度学术中相似的文章
[赵华军]的文章
必应学术
必应学术中相似的文章
[赵华军]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。