中文版 | English
题名

融合高效驱动模块的柔性助行外骨骼设计及控制技术研究

姓名
姓名拼音
GUO Kaiqi
学号
11930454
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
张明明
导师单位
生物医学工程系
论文答辩日期
2022-05-11
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

驱动效率是柔性外骨骼设计的重要考虑因素。高效的驱动系统有助于提高外骨骼设备的可穿戴性并减少设备自身重量给穿戴者带来的额外代谢消耗。然而现有的助行外骨骼设备对电机功率利用率有限,主要由于其采用的单电机驱动单负载路径模式,即一对一驱动,会导致系统冗余。此外,大多数外骨骼设备为了给穿戴者提供足够的助力,往往只是简单地增加电机的峰值功率,而峰值输出时间只占据实际使用时间的少部分,导致驱动系统功率的冗余。这种简单的设计模式进一步阻碍了系统质量的减少,增加外骨骼穿戴者的额外能量消耗。

因此,本研究从两方面提升柔性助行外骨骼设备的驱动效率:首先依据人体步态的对称性,开发一套离合器模块构建一对多驱动系统来对双侧关节进行交替助力,能够在不增加输出功率峰值的情况下实现单一电机多路径助力;其次根据部分关节的运动学特性,引入具有功率放大功能的功率调制模块,其能够收集一段时间内电机的能量,并在较短时间内输出一个爆发性的高功率输出,该设计旨在降低外骨骼设备对输入功率的需求。

本研究设计实验评估了高效率驱动模块在驱动系统中实现单独控制的可行性以及在步行辅助外骨骼中的整体应用。在实验中采集了交互力,人体运动学参数,肌肉激活度以及新陈代谢消耗等数值。实验结果表明,这种外骨骼可以与关节运动协同发挥作用,以减少行走时的肌肉力量需求。同时与传统的直接驱动方法相比,引入功率调制模块的驱动方法显示出功耗需求的降低。直驱模式下和功率调制模式下的新陈代谢消耗相比于外骨骼关闭模式分别降低了10.2%8.9%,验证了本研究中所提出的高效率驱动模式助力的有效性。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 赵新刚, 谈晓伟, 张弼. 柔性下肢外骨骼机器人研究进展及关键技术分析[J]. 机器人, 2020, 42(03): 365-384.
[2] SAWICKI G S, BECK O N, KANG I, et al. The exoskeleton expansion: improving walking and running economy[J]. Journal of NeuroEngineering and Rehabilitation, 2020, 17(1):25-39.
[3] SANCHEZ-VILLAMANAN M D C, GONZALEZ-VARGAS J, TORRICELLI D, et al. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16(1):55-69.
[4] LI Z, YUAN Y, LUO L, et al. Hybrid brain/muscle signals powered wearable walking exoskeleton enhancing motor ability in climbing stairs activity[J]. IEEE Transactions on Medical Robotics and Bionics, 2019, 1(4):218-227.
[5] BRYAN G M, FRANKS P W, KLEIN S C, et al. A hip–knee–ankle exoskeleton emulator for studying gait assistance[J]. The International Journal of Robotics Research, 2020, 40(4-5):722-746.
[6] VERONNEAU C, LUCKING BIGUE J-P, LUSSIER-DESBIENS A, et al. A high-bandwidth back-drivable hydrostatic power distribution system for exoskeletons based on magnetorheological clutches[J]. IEEE Robotics and Automation Letters, 2018, 3(3):2592-2599.
[7] ASBECK A T, DE ROSSI S M M, HOLT K G, et al. A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34(6):744-762.
[8] SAMPER-ESCUDERO J L, GIMENEZ-FERNANDEZ A, SANCHEZ-URAN M A, et al. A cable-driven exosuit for upper limb flexion based on fibres compliance[J]. IEEE Access, 2020, 8:153297-153310.
[9] ASBECK A T, SCHMIDT K, GALIANA I, et al. Multi-joint soft exosuit for gait assistance[C]//IEEE International Conference on Robotics and Automation (ICRA). Seattle: IEEE, 2015:6197-6204.
[10] X. JIN Y C, A. PRADO AND S. K. AGRAWAL. Effects of exoskeleton weight and inertia on human walking[C]//International Conference on Robotics and Automation (ICRA). Singapore:IEEE, 2017:1772-1777.
[11] GALLE S, MALCOLM P, COLLINS S H, et al. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14(1):35-49.
[12] OREKHOV G, FANG Y, LUQUE J, et al. Ankle exoskeleton assistance can improve over-ground walking economy in individuals with cerebral palsy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(2):461-467.
[13] DING Y, GALIANA I, ASBECK A T, et al. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2):119-130.
[14] MALCOLM P, ROSSI D M, SIVIY C, et al. Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14(1):72-85.
[15] NUCKOLS R W, LEE S, SWAMINATHAN K, et al. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking[J]. Science Robotics, 2021, 6(60):1362-1373.
[16] AWAD L N, ESQUENAZI A, FRANCISCO G E, et al. The rewalk restore soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation[J]. Journal of NeuroEngineering and Rehabilitation, 2020, 17(1):80-94.
[17] SIVIY C, BAE J, BAKER L, et al. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking[J]. IEEE Robotics and Automation Letters, 2020, 5(2):828-835.
[18] KHAZOOM C, VERONNEAU C, BIGUE J-P L, et al. Design and control of a multifunctional ankle exoskeleton powered by magnetorheological actuators to assist walking, jumping, and landing[J]. IEEE Robotics and Automation Letters, 2019, 4(3):3083-3090.
[19] KIM J, LEE G, HEIMGARTNER R, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454):668-672.
[20] DING Y, KIM M, KUINDERSMA S, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science Robotics, 2018, 3(15):5438-5447.
[21] QUINLIVAN B T, LEE S, MALCOLM P, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2(2):4416-4426.
[22] LEE S, KARAVAS N, QUINLIVAN B, et al. Autonomous multi-joint soft exosuit for assistance with walking overground[C]//IEEE International Conference on Robotics and Automation (ICRA). Brisbane:IEEE, 2018:2812-2819.
[23] WITTE K A, FIERS P, SHEETS-SINGER A L, et al. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance[J]. Science Robotics, 2020, 5(40):9108-9116.
[24] WITTE K A, ZHANG J, JACKSON R W, et al. Design of two lightweight, high-bandwidth torque-controlled ankle exoskeletons[C]//International Conference on Robotics and Automation (ICRA). Seattle:IEEE, 2015:1223-1228.
[25] POGGENSEE K L, COLLINS S H. How adaptation, training, and customization contribute to benefits from exoskeleton assistance[J]. Science Robotics, 2021, 6(58):1078-1091.
[26] LEE H D, MOON J I, KANG T H. Design of a series elastic tendon actuator based on gait analysis for a walking assistance exosuit[J]. International Journal of Control, Automation and Systems, 2019, 17(11):2940-2947.
[27] ORTIZ J, POLIERO T, CAIROLI G, et al. Energy efficiency analysis and design optimization of an actuation system in a soft modular lower limb exoskeleton[J]. IEEE Robotics and Automation Letters, 2018, 3(1):484-491.
[28] SCHMIDT K, DUARTE J E, GRIMMER M, et al. The Myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers[J]. Frontiers in Neurorobotics, 2017, 11(57):145-161.
[29] GRIMMER M, RIENER R, WALSH C J, et al. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16(1):1-21.
[30] KWON J, PARK J, KU S, et al. A soft wearable robotic ankle-foot-orthosis for post-stroke patients[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2547-2552.
[31] LERNER Z F, HARVEY T A, LAWSON J L. A battery-powered ankle exoskeleton improves gait mechanics in a feasibility study of individuals with cerebral palsy[J]. Annals of Biomedical Engineering, 2019, 47(6):1345-1356.
[32] BARTENBACH V, SCHMIDT K, NAEF M, et al. Concept of a soft exosuit for the support of leg function in rehabilitation[C]//International Conference on Rehabilitation Robotics (ICORR). Singapore:IEEE, 2015:125-130.
[33] FANG K, WU X, CHEN C, et al. Auto cable pretension method for soft exosuit based on gait trajectory prediction network[C]//IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM). Toyonaka:IEEE, 2019:463-468.
[34] ZHANG Q, SHEN X, WANG X, et al. Development of a small clamper for tendon-sheath artificial muscle[C]//2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Stuttgart:IEEE, 2018:1-6.
[35] TAN X, ZHANG B, LIU G, et al. Cadence-insensitive soft exoskeleton design with adaptive gait state detection and iterative force control[J]. IEEE Transactions on Automation Science and Engineering, 2021, 3(1):1-14.
[36] ROSE C G, O'MALLEY M K. Hybrid rigid-soft hand exoskeleton to assist functional dexterity[J]. IEEE Robotics and Automation Letters, 2019, 4(1):73-80.
[37] XILOYANNIS M, ANNESE E, CANESI M, et al. Design and validation of a modular one-to-many actuator for a soft wearable exosuit[J]. Frontiers in Neurorobotics, 2019, 13(39):33-47.
[38] XILOYANNIS M, CHIARADIA D, FRISOLI A, et al. Physiological and kinematic effects of a soft exosuit on arm movements[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16(1):29-44.
[39] ZHENG E, MANCA S, YAN T, et al. Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(10):2419-2430.
[40] WANG W, CHEN J, JI Y, et al. Evaluation of lower leg muscle activities during human walking assisted by an ankle exoskeleton[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11):7168-7176.
[41] KIM S H, HUIZENGA D E, HANDZIC I, et al. Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16(1):106-120.
[42] DING Y, GALIANA I, SIVIY C, et al. IMU-based iterative control for hip extension assistance with a soft exosuit[C]//IEEE International Conference on Robotics and Automation (ICRA). Stockholm:IEEE, 2016:3501-3508.
[43] LENCIONI T, CARPINELLA I, RABUFFETTI M, et al. Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks[J]. Scientific Data, 2019, 6(1):309-319.
[44] HAN Y, WANG X. The biomechanical study of lower limb during human walking[J]. Science China Technological Sciences, 2011, 54(4):983-991.
[45] KARBASI H, HUISSOON J P, KHAJEPOUR A. Uni-drive modular robots: theory, design, and experiments[J]. Mechanism and Machine Theory, 2004, 39(2):183-200.
[46] HALDANE D W, PLECNIK M M, YIM J K, et al. Robotic vertical jumping agility via series-elastic power modulation[J]. Science Robotics, 2016, 1(1):2048-2057.
[47] ILTON M, BHAMLA M S, MA X, et al. The principles of cascading power limits in small, fast biological and engineered systems[J]. Science, 2018, 360(6387):1082-1094.
[48] SAERENS E, FURNéMONT R, VERSTRATEN T, et al. Scaling laws of compliant elements for high energy storage capacity in robotics[J]. Mechanism and Machine Theory, 2019, 139(1):482-505.
[49] HWANG S, KIM Y, KIM Y. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting[J]. BMC Musculoskeletal Disorders, 2009, 10(1):15-25.
[50] COLLINS S H, WIGGIN M B, SAWICKI G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522(7555):212-215.
[51] VILLARREAL D J, POONAWALA H A, GREGG R D. A robust parameterization of human gait patterns across phase-shifting perturbations[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(3):265-278.
[52] QUINTERO D, VILLARREAL D J, LAMBERT D J, et al. Continuous-phase control of a powered knee-ankle prosthesis: amputee experiments across speeds and inclines[J]. IEEE Transactions on Robotics, 2018, 34(3):686-701.
[53] PANIZZOLO F A, GALIANA I, ASBECK A T, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1):43-57.
[54] SHEPERTYCKY M, BURTON S, DICKSON A, et al. Removing energy with an exoskeleton reduces the metabolic cost of walking[J]. Science, 2021, 372(6545):957-960.
[55] DING Y, PANIZZOLO F A, SIVIY C, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1):87-97.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335754
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
郭恺琦. 融合高效驱动模块的柔性助行外骨骼设计及控制技术研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930454-郭恺琦-生物医学工程系(5173KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭恺琦]的文章
百度学术
百度学术中相似的文章
[郭恺琦]的文章
必应学术
必应学术中相似的文章
[郭恺琦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。