[1] DANINO T, PRINDLE A, KWONG G A, et al. Programmable probiotics for detection of cancer in urine [J]. Sci Transl Med, 2015, 7(289): 289-84.
[2] LIENERT F, LOHMUELLER J J, GARG A, et al. Synthetic biology in mammalian cells: next generation research tools and therapeutics [J]. Nat Rev Mol Cell Biol, 2014, 15(2): 95-107.
[3] SLOMOVIC S, PARDEE K, COLLINS J J. Synthetic biology devices for in vitro and in vivo diagnostics [J]. Proc Natl Acad Sci U S A, 2015, 112(47): 14429-35.
[4] DEANS T L, CANTOR C R, COLLINS J J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells [J]. Cell, 2007, 130(2): 363-72.
[5] KHALIL A S, LU T K, BASHOR C J, et al. A synthetic biology framework for programming eukaryotic transcription functions [J]. Cell, 2012, 150(3): 647-58.
[6] WANG X, CHEN X, YANG Y. Spatiotemporal control of gene expression by a light-switchable transgene system [J]. Nat Methods, 2012, 9(3): 266-9.
[7] GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation [J]. Cell, 2014, 159(3): 647-61.
[8] XIE M, YE H, WANG H, et al. beta-cell-mimetic designer cells provide closed-loop glycemic control [J]. Science, 2016, 354(6317): 1296-301.
[9] SAXENA P, HENG B C, BAI P, et al. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells [J]. Nat Commun, 2016, 7(11247).
[10] ISKRATSCH T, WOLFENSON H, SHEETZ M P. Appreciating force and shape-the rise of mechanotransduction in cell biology [J]. Nat Rev Mol Cell Biol, 2014, 15(12): 825-33.
[11] COX T R, ERLER J T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer [J]. Dis Model Mech, 2011, 4(2): 165-78.
[12] BUTCHER D T, ALLISTON T, WEAVER V M. A tense situation: forcing tumour progression [J]. Nat Rev Cancer, 2009, 9(2): 108-22.
[13] LEKKA M. Atomic force microscopy: A tip for diagnosing cancer [J]. Nat Nanotechnol, 2012, 7(11): 691-2.
[14] WANG J H, LI B. Mechanics rules cell biology [J]. Sports Med Arthrosc Rehabil Ther Technol, 2010, 2(16).
[15] MOHAMMADI H, SAHAI E. Mechanisms and impact of altered tumor mechanics [J]. Nat Cell Biol, 2018, 20(7): 766-74.
[16] LECKBAND D E, DE ROOIJ J. Cadherin adhesion and mechanotransduction [J]. Annu Rev Cell Dev Biol, 2014, 30(291-315.
[17] ARNADOTTIR J, CHALFIE M. Eukaryotic mechanosensitive channels [J]. Annu Rev Biophys, 2010, 39(111-37.
[18] RANADE S S, SYEDA R, PATAPOUTIAN A. Mechanically Activated Ion Channels [J]. Neuron, 2015, 87(6): 1162-79.
[19] BOOTH I R, EDWARDS M D, BLACK S, et al. Mechanosensitive channels in bacteria: signs of closure? [J]. Nat Rev Microbiol, 2007, 5(6): 431-40.
[20] ZHANG W K, WANG D, DUAN Y, et al. Mechanosensitive gating of CFTR [J]. Nature Cell Biology, 2010, 12(5): 507-12.
[21] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels [J]. Science, 2010, 330(6000): 55-60.
[22] ALBUISSON J, MURTHY S E, BANDELL M, et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels [J]. Nat Commun, 2013, 4(1884).
[23] RANADE S S, QIU Z, WOO S H, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice [J]. Proc Natl Acad Sci U S A, 2014, 111(28): 10347-52.
[24] ZHAO Q, WU K, GENG J, et al. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels [J]. Neuron, 2016, 89(6): 1248-63.
[25] WU J, LEWIS A H, GRANDL J. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels [J]. Trends Biochem Sci, 2017, 42(1): 57-71.
[26] COX C D, BAE C, ZIEGLER L, et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension [J]. Nat Commun, 2016, 7(10366).
[27] ZHAO Q, ZHOU H, CHI S, et al. Structure and mechanogating mechanism of the Piezo1 channel [J]. Nature, 2018, 554(7693): 487-92.
[28] SYEDA R, FLORENDO M N, COX C D, et al. Piezo1 Channels Are Inherently Mechanosensitive [J]. Cell Rep, 2016, 17(7): 1739-46.
[29] PASZEK M J, ZAHIR N, JOHNSON K R, et al. Tensional homeostasis and the malignant phenotype [J]. Cancer Cell, 2005, 8(3): 241-54.
[30] GUO L, CAI T, CHEN K, et al. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ [J]. J Cell Biol, 2018, 217(4): 1431-51.
[31] KIM S-G, AKAIKE T, SASAGAWA T, et al. Gene Expression of Type I and Type III Collagen by Mechanical Stretch in Anterior Cruciate Ligament Cells [J]. Cell Structure and Function, 2002, 27(3): 139-44.
[32] DARDIK A, CHEN L, FRATTINI J, et al. Differential effects of orbital and laminar shear stress on endothelial cells [J]. J Vasc Surg, 2005, 41(5): 869-80.
[33] TSE J M, CHENG G, TYRRELL J A, et al. Mechanical compression drives cancer cells toward invasive phenotype [J]. Proc Natl Acad Sci U S A, 2012, 109(3): 911-6.
[34] HSIEH H Y, CAMCI-UNAL G, HUANG T W, et al. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment [J]. Lab Chip, 2014, 14(3): 482-93.
[35] GARTEISER P, DOBLAS S, DAIRE J L, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation [J]. Eur Radiol, 2012, 22(10): 2169-77.
[36] ELLEGALA D B, LEONG-POI H, CARPENTER J E, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3 [J]. Circulation, 2003, 108(3): 336-41.
[37] MARINO A, BATTAGLINI M, DE PASQUALE D, et al. Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells [J]. Sci Rep, 2018, 8(1): 6257.
[38] WU S C Y, MEIR Y J J, COATES C J, et al. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2 and Mos1 in mammalian cells [J]. P Natl Acad Sci USA, 2006, 103(41): 15008-13.
[39] DE FELICE D, ALAIMO A. Mechanosensitive Piezo Channels in Cancer: Focus on altered Calcium Signaling in Cancer Cells and in Tumor Progression [J]. Cancers (Basel), 2020, 12(7):
[40] SUN Y, LI M, LIU G, et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism [J]. J Cancer Res Clin Oncol, 2020, 146(5): 1139-52.
[41] HANNANTA-ANAN P, CHOW B Y. Optogenetic Control of Calcium Oscillation Waveform Defines NFAT as an Integrator of Calcium Load [J]. Cell Syst, 2016, 2(4): 283-8.
[42] CRABTREE G R, SCHREIBER S L. SnapShot: Ca2+-calcineurin-NFAT signaling [J]. Cell, 2009, 138(1): 210.
[43] YE H, DAOUD-EL BABA M, PENG R W, et al. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice [J]. Science, 2011, 332(6037): 1565-8.
[44] ZHAO D, XUE C, LI Q, et al. Substrate stiffness regulated migration and angiogenesis potential of A549 cells and HUVECs [J]. J Cell Physiol, 2018, 233(4): 3407-17.
[45] MA Y, LIN M, HUANG G, et al. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate [J]. Adv Mater, 2018, 30(49): e1705911.
[46] WIEDENHEFT B, STERNBERG S H, DOUDNA J A. RNA-guided genetic silencing systems in bacteria and archaea [J]. Nature, 2012, 482(7385): 331-8.
[47] CONG L, RAN F A, COX D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems [J]. Science, 2013, 339(6121): 819-23.
[48] URNOV F D, MILLER J C, LEE Y L, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases [J]. Nature, 2005, 435(7042): 646-51.
[49] MALI P, YANG L H, ESVELT K M, et al. RNA-Guided Human Genome Engineering via Cas9 [J]. Science, 2013, 339(6121): 823-6.
[50] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes [J]. Cell, 2013, 154(2): 442-51.
[51] MAEDER M L, LINDER S J, CASCIO V M, et al. CRISPR RNA-guided activation of endogenous human genes [J]. Nature Methods, 2013, 10(10): 977.
[52] PEREZ-PINERA P, KOCAK D D, VOCKLEY C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors [J]. Nature Methods, 2013, 10(10): 973.
[53] STYLIANOPOULOS T, MUNN L L, JAIN R K. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside [J]. Trends Cancer, 2018, 4(4): 292-319.
[54] YE H F, DAOUD-EL BABA M, PENG R W, et al. A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice [J]. Science, 2011, 332(6037): 1565-8.
修改评论