中文版 | English
题名

记录细胞力学微环境的合成生物学基因线路

姓名
姓名拼音
MA Jiao
学号
11930601
学位类型
硕士
学位专业
071009 细胞生物学
学科门类/专业学位类别
07 理学
导师
黄巍
导师单位
生物系
论文答辩日期
2022-04-28
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

肿瘤的发生通常伴随基质硬度的增加,如乳腺癌。良性肿瘤组织的弹性模量为1.9~3.7 kPa,高于正常组织的1.1~1.8 kPaPiezo1作为第一个满足严格定义的哺乳动物机械力敏感的Ca2+离子通道,可被多种类型的机械刺激激活,但将其作为哺乳动物细胞力学方面感受元件还未见报道。NFAT作为一种对免疫细胞功能、发育、干细胞分化和肿瘤进展至关重要的钙依赖性转录因子,主要由脉冲形式的钙信号实现激活。基于从特定启动子pNFAT启动转录,Ca2+-NFAT信号通路能够实现细胞的外界刺激可与信号表达直接相关。我们设计了定量诱导表达Piezo1-BFP及稳定表达Ca2+信号下游pNFAT-EGFP基因线路,并探究这一基因线路能否作为探测肿瘤硬度的工具。我们将基因线路构建在CHOWTCHOPiezo1-/-细胞中,进行2D/3D培养。在没有DOX诱导Piezo1表达的情况下,NFAT-EGFP2D培养的CHOWT中有很高的基底值,在3D培养中表达量较2D培养低,在CHOpiezo1-/-2D/3D培养时均不表达。Piezo1-NFAT-CHOPiezo1-/-细胞2D培养条件时,细胞受力均一,Piezo1-EGFP表达量与NFAT-EGFP表达量呈线性相关,随DOX浓度的升高而升高。并且细胞培养在PDMS2D培养Piezo1-BFP表达量较塑料培养板2D培养低,表明Piezo1的表达量与基质硬度有关。Piezo1-NFAT-CHOPiezo1-/-细胞3D培养时,Piezo1-EGFPNFAT-EGFP表达量之间的线性关系被破环。超低吸附3D培养,细胞受到连续不均匀的力,NFAT-EGFP峰图呈连续弥散的形态;1%Agarose 凹槽3D培养,外围细胞受到的力与内细胞团受到的不同,NFAT-EGFP的表达量呈双峰,体现出Piezo1-NFAT基因线路对细胞受力的响应。综上,我们认为Piezo1-NFAT基因线路具有监测体内组织力学的变化的潜力。

其他摘要

Tumors are often accompanied by an increase in matrix stiffness, as in breast cancer. The elastic modulus of benign tumor tissue was 1.9~3.7 kPa, which is higher than 1.1~1.8 kPa of normal tissue. Piezo1 is the first mechanism-sensitive Ca2+ channel protein in mammals. It can be activated by many types of mechanical stimuli, but its role as a mechanical sensing element in the mammalian cell has not been reported. NFAT is a calcium-dependent transcription factor that is critical for immune cell function, development, stem cell differentiation, and tumor progression. Its gene expression is selected by calcium signals in the form of pulses. Based on the specific promoter pNFAT, the Ca2+-NFAT signaling pathway can record a signal that is directly related to cellular stimulation. We designed a gene circuit consisting of the DOX-induced and quantitative expression of Piezo1-BFP and the stable expression of Ca2+ signal downstream to investigate whether this gene circuit can be used as a tool to detect tumor stiffness. We constructed the gene circuits in CHOWT and CHOPiezo1-/- cells for 2D/3D culture. In the absence of DOX, which induced Piezo1 expression, NFAT-EGFP had a high baseline in CHOWT cells and a lower expression in the 3D culture than in the 2D culture and was not expressed in the 2D/3D culture of CHOpiezo1-/- cells. Piezo1-NFAT-CHOPiezo1-/- cells were tensed uniformly during 2D culture, and the expression of Piezo1-EGFP was linear dependent on the expression of NFAT-EGFP, which increased with the increase of DOX concentration. The expression of Piezo1-BFP in 2D culture on PDMS was lower than that in 2D culture on plastic plates, indicating that the expression of Piezo1 was related to matrix stiffness. With Piezo1-NFAT-CHOPiezo1-/- cell 3D culture, the linear relationship between Piezo1-EGFP and the expression of NFAT-EGFP was broken. In a 3D culture with an Ultra-low attachment microplate, cells were subjected to continuous non-uniform force, and the NFAT-EGFP showed a continuous dispersion peak pattern. In the 1%Agarose groove 3D culture, the force of the peripheral cells was different from that of the inner cell mass. The expression of NFAT-EGFP was bimodal. The Piezo1-NFAT gene circuit in the cells had different responses. In conclusion, we think the Piezo1-NFAT gene circuit has the potential to monitor the changes in internal tissue mechanics.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] DANINO T, PRINDLE A, KWONG G A, et al. Programmable probiotics for detection of cancer in urine [J]. Sci Transl Med, 2015, 7(289): 289-84.
[2] LIENERT F, LOHMUELLER J J, GARG A, et al. Synthetic biology in mammalian cells: next generation research tools and therapeutics [J]. Nat Rev Mol Cell Biol, 2014, 15(2): 95-107.
[3] SLOMOVIC S, PARDEE K, COLLINS J J. Synthetic biology devices for in vitro and in vivo diagnostics [J]. Proc Natl Acad Sci U S A, 2015, 112(47): 14429-35.
[4] DEANS T L, CANTOR C R, COLLINS J J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells [J]. Cell, 2007, 130(2): 363-72.
[5] KHALIL A S, LU T K, BASHOR C J, et al. A synthetic biology framework for programming eukaryotic transcription functions [J]. Cell, 2012, 150(3): 647-58.
[6] WANG X, CHEN X, YANG Y. Spatiotemporal control of gene expression by a light-switchable transgene system [J]. Nat Methods, 2012, 9(3): 266-9.
[7] GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation [J]. Cell, 2014, 159(3): 647-61.
[8] XIE M, YE H, WANG H, et al. beta-cell-mimetic designer cells provide closed-loop glycemic control [J]. Science, 2016, 354(6317): 1296-301.
[9] SAXENA P, HENG B C, BAI P, et al. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells [J]. Nat Commun, 2016, 7(11247).
[10] ISKRATSCH T, WOLFENSON H, SHEETZ M P. Appreciating force and shape-the rise of mechanotransduction in cell biology [J]. Nat Rev Mol Cell Biol, 2014, 15(12): 825-33.
[11] COX T R, ERLER J T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer [J]. Dis Model Mech, 2011, 4(2): 165-78.
[12] BUTCHER D T, ALLISTON T, WEAVER V M. A tense situation: forcing tumour progression [J]. Nat Rev Cancer, 2009, 9(2): 108-22.
[13] LEKKA M. Atomic force microscopy: A tip for diagnosing cancer [J]. Nat Nanotechnol, 2012, 7(11): 691-2.
[14] WANG J H, LI B. Mechanics rules cell biology [J]. Sports Med Arthrosc Rehabil Ther Technol, 2010, 2(16).
[15] MOHAMMADI H, SAHAI E. Mechanisms and impact of altered tumor mechanics [J]. Nat Cell Biol, 2018, 20(7): 766-74.
[16] LECKBAND D E, DE ROOIJ J. Cadherin adhesion and mechanotransduction [J]. Annu Rev Cell Dev Biol, 2014, 30(291-315.
[17] ARNADOTTIR J, CHALFIE M. Eukaryotic mechanosensitive channels [J]. Annu Rev Biophys, 2010, 39(111-37.
[18] RANADE S S, SYEDA R, PATAPOUTIAN A. Mechanically Activated Ion Channels [J]. Neuron, 2015, 87(6): 1162-79.
[19] BOOTH I R, EDWARDS M D, BLACK S, et al. Mechanosensitive channels in bacteria: signs of closure? [J]. Nat Rev Microbiol, 2007, 5(6): 431-40.
[20] ZHANG W K, WANG D, DUAN Y, et al. Mechanosensitive gating of CFTR [J]. Nature Cell Biology, 2010, 12(5): 507-12.
[21] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels [J]. Science, 2010, 330(6000): 55-60.
[22] ALBUISSON J, MURTHY S E, BANDELL M, et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels [J]. Nat Commun, 2013, 4(1884).
[23] RANADE S S, QIU Z, WOO S H, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice [J]. Proc Natl Acad Sci U S A, 2014, 111(28): 10347-52.
[24] ZHAO Q, WU K, GENG J, et al. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels [J]. Neuron, 2016, 89(6): 1248-63.
[25] WU J, LEWIS A H, GRANDL J. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels [J]. Trends Biochem Sci, 2017, 42(1): 57-71.
[26] COX C D, BAE C, ZIEGLER L, et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension [J]. Nat Commun, 2016, 7(10366).
[27] ZHAO Q, ZHOU H, CHI S, et al. Structure and mechanogating mechanism of the Piezo1 channel [J]. Nature, 2018, 554(7693): 487-92.
[28] SYEDA R, FLORENDO M N, COX C D, et al. Piezo1 Channels Are Inherently Mechanosensitive [J]. Cell Rep, 2016, 17(7): 1739-46.
[29] PASZEK M J, ZAHIR N, JOHNSON K R, et al. Tensional homeostasis and the malignant phenotype [J]. Cancer Cell, 2005, 8(3): 241-54.
[30] GUO L, CAI T, CHEN K, et al. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ [J]. J Cell Biol, 2018, 217(4): 1431-51.
[31] KIM S-G, AKAIKE T, SASAGAWA T, et al. Gene Expression of Type I and Type III Collagen by Mechanical Stretch in Anterior Cruciate Ligament Cells [J]. Cell Structure and Function, 2002, 27(3): 139-44.
[32] DARDIK A, CHEN L, FRATTINI J, et al. Differential effects of orbital and laminar shear stress on endothelial cells [J]. J Vasc Surg, 2005, 41(5): 869-80.
[33] TSE J M, CHENG G, TYRRELL J A, et al. Mechanical compression drives cancer cells toward invasive phenotype [J]. Proc Natl Acad Sci U S A, 2012, 109(3): 911-6.
[34] HSIEH H Y, CAMCI-UNAL G, HUANG T W, et al. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment [J]. Lab Chip, 2014, 14(3): 482-93.
[35] GARTEISER P, DOBLAS S, DAIRE J L, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation [J]. Eur Radiol, 2012, 22(10): 2169-77.
[36] ELLEGALA D B, LEONG-POI H, CARPENTER J E, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3 [J]. Circulation, 2003, 108(3): 336-41.
[37] MARINO A, BATTAGLINI M, DE PASQUALE D, et al. Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells [J]. Sci Rep, 2018, 8(1): 6257.
[38] WU S C Y, MEIR Y J J, COATES C J, et al. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2 and Mos1 in mammalian cells [J]. P Natl Acad Sci USA, 2006, 103(41): 15008-13.
[39] DE FELICE D, ALAIMO A. Mechanosensitive Piezo Channels in Cancer: Focus on altered Calcium Signaling in Cancer Cells and in Tumor Progression [J]. Cancers (Basel), 2020, 12(7):
[40] SUN Y, LI M, LIU G, et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism [J]. J Cancer Res Clin Oncol, 2020, 146(5): 1139-52.
[41] HANNANTA-ANAN P, CHOW B Y. Optogenetic Control of Calcium Oscillation Waveform Defines NFAT as an Integrator of Calcium Load [J]. Cell Syst, 2016, 2(4): 283-8.
[42] CRABTREE G R, SCHREIBER S L. SnapShot: Ca2+-calcineurin-NFAT signaling [J]. Cell, 2009, 138(1): 210.
[43] YE H, DAOUD-EL BABA M, PENG R W, et al. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice [J]. Science, 2011, 332(6037): 1565-8.
[44] ZHAO D, XUE C, LI Q, et al. Substrate stiffness regulated migration and angiogenesis potential of A549 cells and HUVECs [J]. J Cell Physiol, 2018, 233(4): 3407-17.
[45] MA Y, LIN M, HUANG G, et al. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate [J]. Adv Mater, 2018, 30(49): e1705911.
[46] WIEDENHEFT B, STERNBERG S H, DOUDNA J A. RNA-guided genetic silencing systems in bacteria and archaea [J]. Nature, 2012, 482(7385): 331-8.
[47] CONG L, RAN F A, COX D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems [J]. Science, 2013, 339(6121): 819-23.
[48] URNOV F D, MILLER J C, LEE Y L, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases [J]. Nature, 2005, 435(7042): 646-51.
[49] MALI P, YANG L H, ESVELT K M, et al. RNA-Guided Human Genome Engineering via Cas9 [J]. Science, 2013, 339(6121): 823-6.
[50] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes [J]. Cell, 2013, 154(2): 442-51.
[51] MAEDER M L, LINDER S J, CASCIO V M, et al. CRISPR RNA-guided activation of endogenous human genes [J]. Nature Methods, 2013, 10(10): 977.
[52] PEREZ-PINERA P, KOCAK D D, VOCKLEY C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors [J]. Nature Methods, 2013, 10(10): 973.
[53] STYLIANOPOULOS T, MUNN L L, JAIN R K. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside [J]. Trends Cancer, 2018, 4(4): 292-319.
[54] YE H F, DAOUD-EL BABA M, PENG R W, et al. A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice [J]. Science, 2011, 332(6037): 1565-8.

所在学位评定分委会
生物系
国内图书分类号
Q274
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335755
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
马娇. 记录细胞力学微环境的合成生物学基因线路[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930601-马娇-生物系.pdf(6031KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马娇]的文章
百度学术
百度学术中相似的文章
[马娇]的文章
必应学术
必应学术中相似的文章
[马娇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。