中文版 | English
题名

船舶循迹问题的水动力计算和自动控制方法

姓名
姓名拼音
DING Weinan
学号
11930323
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
安松
导师单位
前沿与交叉科学研究院
论文答辩日期
2022-05-09
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
随着海上运输业的发展,水面船舶作为海上运输业主要交通工具之一,
对其自动控制的研究极为重要。动力定位系统作为水面船舶自动控制的关
键环节,分为位置参考/传感器系统、观测器系统、制导系统和控制器系统
四大模块,分别对应位置、速度、风、浪和流的数据采集,状态重构和数
据融合,路径和轨迹规划,所需推力和力矩的计算,所以动力定位系统的
研究对船舶的自动控制是富有意义的。
配备动力定位系统的船舶常用 PID 控制器与拓展卡尔曼滤波器耦合的
方法,但是面对航速变化引起的模型参数不准确,其控制精度不够理想。
所以在模型参数不准确的情况时,需要寻求新的控制策略优化控制精度。
本文研究内容主要涉及动力定位系统中的制导模块、控制器模块和观
测器模块,制导模块采用的方法是加速度为修正梯形的规划方法,保证船
舶在设定的起始点和终点的速度均为零;观测器模块采用基于模型与控制
器耦合的三阶滑模观测器,优化了由于滑模控制器导致输入不连续的现象;
控制器模块采用鲁棒性好的超螺旋滑模控制算法,解决了在模型参数未知
情况下,控制精度不足的问题。
本文使用 Matlab Simulink 对船舶运动模拟器、观测器模块、制导模
块与控制器模块进行整合,完成整个仿真系统的搭建,并通过仿真结果证
明该算法在不同海况下拥有良好的控制精度,其不足之处在于控制参数固
定,无法根据扰动变化实时更新控制参数。
其他摘要
With the development of the marine transportation industry, the research on
the automatic control of surface ships, which is one of the main means of
transportation in the marine transportation industry, is of extreme importance. As
the key link of automatic control of surface ships, dynamic positioning system is
divided into four modules: position reference/sensor system, observer system,
guidance system and controller system, corresponding to data acquisition of
position, speed, wind, wave and current’s state reconstruction, data fusion, path
and trajectory planning, and calculation of required thrust and moment,
respectively. Therefore, the research of dynamic positioning system is
meaningful for the automatic control of ships.
Ships equipped with dynamic positioning systems often use the method that
couples PID controller and extended Kalman filter. But the control accuracy is
not ideal owing to inaccurate model parameters caused by changes in speed.
Therefore, when the model parameters are inaccurate, it is necessary to seek a
new control strategy to optimize the control accuracy.
The research content of this paper mainly involves the guidance module,
controller module and observer module in the dynamic positioning system. The
guidance module adopts the planning method with the acceleration of the
modified trapezoid to ensure that the speed of the ship at the set starting point
and end point is zero; The observer module adopts a third-order sliding mode
observer coupling of model and controller to optimize the input discontinuity
caused by sliding mode controller; The controller module adopts the super
twisting sliding mode control algorithm with good robustness to solve the
problem of insufficient control accuracy when the model parameters are unknown.
In this paper, MATLAB and Simulink are used to integrate the ship motion
simulator, observer module, guidance module and controller module to complete
the construction of the whole simulation system. The simulation results show that
the algorithm has good control accuracy under different sea conditions. Its
deficiency is that the control parameters are fixed and can not update the control parameters in real time according to the disturbance changes.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 郑荣才, 宋健力, 黎琼, 等. 船舶动力定位系统[J]. 中国惯性技术学报, 2013(4): 495-499.
[2] 赵健男. 基于智能控制的船舶路径规划及目标循迹[D]. 哈尔滨工业大学.
[3] SHIGUNOV V, EL MOCTAR O, PAPANIKOLAOU A, et al. International benchmark study on numerical simulation methods for prediction of manoeuvrability of ships in waves[J]. Ocean Engineering, 2018, 165: 365-385.
[4] 张志恒, 吕向琪, 张心署. 规则波浪中的船舶操纵性数值模拟[C]//第十六届全国水动力学术会议
[5] 刘冰洁, 毕晓君. 船舶操纵性优化的约束多目标进化算法[J]. 哈尔滨工程大学学报, 2020, 41(9):7.
[6] 闫成勇, 章文俊, 尹建川, 等. 基于主成分分析的船舶操纵性综合评价[J]. 上海海事大学学报, 2020.
[7] YASUKAWA H, NAKAYAMA Y. 6-DOF motion simulations of a turning ship in regular waves[C]//International Conference on Marine Simulation and Ship Manoeuvrability. Panama Panama city, 2009.
[8] SEO M G, KIM Y. Numerical analysis on ship maneuvering coupled with ship motion in waves[J]. Ocean engineering, 2011, 38(17-18): 1934-1945.
[9] 杜佳璐, 郭晨, 杨承恩. 船舶航向非线性系统的自适应跟踪控制器设计[J]. 应用科学学报, 2006, 24(1):83-0083.
[10] 谢佩军. 基于免疫遗传算法与变论域模糊PID的船舶航向控制研究[J]. 工业控制计算机, 2021, 34(6):3.
[11] 王化明, 岳彩宇, 陈林, 等. 随机波浪下基于粒子滤波算法的船舶航向控制[J]. 浙江海洋大学学报:自然科学版, 2021, 40(2):8.
[12] 牟丽莎, 杨蓉松, 张忠华. 基于参数设计的船舶航向目标轨迹控制器研究[J]. 舰船科学技术, 2018, 40(20):32-34.
[13] GHOMMAM J, MNIF F. Coordinated path-following control for a group of underactuated surface vessels[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3951-3963.
[14] 陆潇杨, 刘志全, 高迪驹, 等. 带漂角和输入饱和的水面船舶航向控制[J]. 中国舰船研究, 2021, 16(2):9.
[15] 安顺, 何燕, 王龙金. 基于反步自适应控制算法的船舶航向控制方法[J]. 机电设备, 2020, 37(6):5.
[16] LEE D B, TATLICIOGLU E, BURG T C, et al. Adaptive output tracking control of a surface vessel[C]//2008 47th IEEE Conference on Decision and Control. IEEE, 2008: 1352-1357.
[17] SKJETNE R, FOSSEN T I, KOKOTOVIĆ P V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory[J]. Automatica, 2005, 41(2): 289-298.
[18] BALCHEN J G, JENSSEN N A, MATHISEN E, et al. A dynamic positioning system based on Kalman filtering and optimal control[J]. 1980.
[19] GRIMBLE M J, PATTON R J, WISE D A. Use of Kalman filtering techniques in dynamic ship-positioning systems[C]//IEE Proceedings D (Control Theory and Applications). IET Digital Library, 1980, 127(3): 93-102.
[20] FOSSEN T I, PEREZ T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE control systems magazine, 2009, 29(6): 32-46.
[21] FOSSEN T I, STRAND J P. Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel[J]. Automatica, 1999, 35(1): 3-16.
[22] LEKKAS A M, FOSSEN T I. Trajectory tracking and ocean current estimation for marine underactuated vehicles[C]//2014 IEEE Conference on Control Applications (CCA). IEEE, 2014: 905-910.
[23] AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE transactions on automatic control, 2007, 52(8): 1362-1379.
[24] FOSSEN T I, LEKKAS A M. Direct and indirect adaptive integral line‐of‐sight path‐following controllers for marine craft exposed to ocean currents[J]. International Journal of Adaptive Control and Signal Processing, 2017, 31(4): 445-463.
[25] 门茂峰. 基于滑模变结构的船舶航向控制[D].大连海事大学,2020.
[26] 陈志娟. 基于模型预测控制方法的船舶路径跟踪控制[D].大连海事大学,2020.
[27] MYERS J J, HOLM C H, MCALLISTER R F. Handbook of ocean and underwater engineering[J]. 1969.
[28] 吴望一. 流体力学 上册[M]. 北京大学出版社, 1982.
[29] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge university press, 1993.
[30] 王元慧, 张赞, 丁福光, 等. 船舶动力定位[M] 科学出版社.
[31] FOSSEN T I. Marine control systems–guidance. navigation, and control of ships, rigs and underwater vehicles[J]. Marine Cybernetics, Trondheim, Norway, Org. Number NO 985 195 005 MVA, www. marinecybernetics. com, ISBN: 82 92356 00 2, 2002.
[32] TSOURDOS A, WHITE B, SHANMUGAVEL M. Cooperative path planning of unmanned aerial vehicles[M]. John Wiley & Sons, 2010.
[33] 叶增林, 陈华, 吴昊. 基于带约束的修正梯形加速度规律规划算法研究[J]. 河南工程学院学报: 自然科学版, 2020, 32(4): 6.
[34] KALMAN R E. A new approach to linear filtering and prediction problems[J]. 1960.
[35] SHTESSEL Y, EDWARDS C, FRIDMAN L, et al. Sliding mode control and observation[M]. New York: Springer New York, 2014.Sagatun S I, Fossen T I, Lindegaard K P. Inertance control of underwater installations[J]. IFAC Proceedings Volumes, 2001, 34(7): 345-350.
[36] CHALANGA, ASIF, et al. "Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches." IEEE Transactions on Industrial Electronics 63.6 (2016): 3677-3685.
[37] LEVANT, ARIE. "Higher-order sliding modes, differentiation and output-feedback control." International journal of Control 76.9-10 (2003): 924-941.
[38] SHTESSEL Y, EDWARDS C, FRIDMAN L, et al. Sliding mode control and observation[M]. New York: Springer New York, 2014.Sagatun S I, Fossen T I, Lindegaard K P. Inertance control of underwater installations[J]. IFAC Proceedings Volumes, 2001, 34(7): 345-350.
[39] SLOTINE J J E, LI W. Applied nonlinear control[M]. Englewood Cliffs, NJ: Prentice hall, 1991.
[40] Modern sliding mode control theory: New perspectives and applications[M]. Springer Science & Business Media, 2008.
[41] LEVANT, ARIE. "Sliding order and sliding accuracy in sliding mode control." International journal of control 58.6 (1993): 1247-1263.
[42] LEVANT, ARIE. "Robust exact differentiation via sliding mode technique." automatica 34.3 (1998): 379-384.
[43] SEEBER, RICHARD, MARTIN HORN. "Stability proof for a well-established super-twisting parameter setting." Automatica 84 (2017): 241-243.
[44] CHALANGA, ASIF, et al. "Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches." IEEE Transactions on Industrial Electronics 63.6 (2016): 3677-3685.
[45] LEVANT, ARIE. "Higher-order sliding modes, differentiation and output-feedback control." International journal of Control 76.9-10 (2003): 924-941.
[46] IANAGUI, ANDRÉ SS, EDUARDO A. Tannuri. "High order sliding mode control and observation for DP systems." IFAC-PapersOnLine 51.29 (2018): 110-115.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
U664.82
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335757
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
丁伟男. 船舶循迹问题的水动力计算和自动控制方法[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930323-丁伟男-海洋科学与工程(6555KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[丁伟男]的文章
百度学术
百度学术中相似的文章
[丁伟男]的文章
必应学术
必应学术中相似的文章
[丁伟男]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。