[1] MCKEE M. Mars rover may not escape sand trap for weeks[J]. New Scientist, 2009: 2-4.
[2] LINDEMANN R A, VOORHEES C J. Mars exploration rover mobility assembly design, test and performance[C]//2005 IEEE International Conference on Systems, Man and Cybernetics:volume 1. IEEE, 2005: 450-455.
[3] PATEL N, SLADE R, CLEMMET J. The exomars rover locomotion subsystem[J]. Journal of Terramechanics, 2010, 47(4): 227-242.
[4] WONG J Y. Theory of ground vehicles[M]. John Wiley & Sons, 2008: 117-142.
[5] ISHIGAMI G. Terramechanics-based analysis and control for lunar/planetary exploration robots [J]. PhD Thesis, Graduate School of Engineering, Tohoku University, 2008: 40-74.
[6] IAGNEMMA K, SHIBLY H, DUBOWSKY S. On-line terrain parameter estimation for planetary rovers[C]//Proceedings 2002 IEEE international conference on robotics and automation: volume 3. IEEE, 2002: 3142-3147.
[7] JOHNSON J B, KULCHITSKY A V, DUVOY P, et al. Discrete element method simulations of mars exploration rover wheel high-slip mobility tests[M]//Earth and Space 2014. 2014: 183-191.
[8] JIA Z, SMITH W, PENG H. Fast computation of wheel-soil interactions for safe and effcient operation of mobile robots[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011: 3004-3010.
[9] JIA Z, SMITH W, PENG H. Terramechanics-based wheel–terrain interaction model and its applications to off-road wheeled mobile robots[J]. Robotica, 2012, 30(3): 491-503.
[10] CUNNINGHAM C, ONO M, NESNAS I, et al. Locally-adaptive slip prediction for planetary rovers using gaussian processes[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 5487-5494.
[11] REINA G, MILELLA A, PANELLA F. Vision-based wheel sinkage estimation for rough-terrain mobile robots[C]//2008 15th International Conference on Mechatronics and Machine Vision in Practice. IEEE, 2008: 75-80.
[12] DING L, GAO H, DENG Z, et al. Slip-ratio-coordinated control of planetary exploration robots traversing over deformable rough terrain[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010: 4958-4963.
[13] LIU Z, GUO J, DING L, et al. Online estimation of terrain parameters and resistance force based on equivalent sinkage for planetary rovers in longitudinal skid[J]. Mechanical systems and signal processing, 2019, 119: 39-54.
[14] GAO H, GUO J, DING L, et al. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics[J]. Journal of Terramechanics, 2013, 50(5-6): 327-343.
[15] DING L, GAO H, DENG Z, et al. Foot–terrain interaction mechanics for legged robots: Modeling and experimental validation[J]. The International Journal of Robotics Research, 2013, 32 (13): 1585-1606.
[16] XIONG X, AMES A D, GOLDMAN D I. A stability region criterion for flat-footed bipedal walking on deformable granular terrain[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 4552-4559.
[17] GOSYNE J R, HUBICKI C M, XIONG X, et al. Bipedial locomotion up sandy slopes: Systematic experiments using zero moment point methods[C]//2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids). IEEE, 2018: 994-1001.
[18] HUBICKI C M, AGUILAR J J, GOLDMAN D I, et al. Tractable terrain-aware motion planning on granular media: an impulsive jumping study[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 3887-3892.
[19] CHANG A H, HUBICKI C M, AGUILAR J J, et al. Learning terrain dynamics: A gaussian process modeling and optimal control adaptation framework applied to robotic jumping[J]. IEEE Transactions on Control Systems Technology, 2020, 29(4): 1581-1596.
[20] RIESER J, QIAN F, GOLDMAN D. Legged-locomotion on inclined granular media[C]//APS March Meeting Abstracts: volume 2016. 2016: Y40-003.
[21] ARSLAN Ö, SARANLI U. Reactive planning and control of planar spring–mass running on rough terrain[J]. IEEE Transactions on Robotics, 2011, 28(3): 567-579.
[22] KOLVENBACH H, BÄRTSCHI C, WELLHAUSEN L, et al. Haptic inspection of planetary soils with legged robots[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1626-1632.
[23] KOLVENBACH H, BELLICOSO D, JENELTEN F, et al. Effcient gait selection forquadrupedal robots on the moon and mars[C]//14th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2018). 2018: 1-8.
[24] ARM P, ZENKL R, BARTON P, et al. Spacebok: A dynamic legged robot for space exploration [C]//2019 international conference on robotics and automation. IEEE, 2019: 6288-6294.
[25] INOTSUME H, CREAGER C, WETTERGREEN D, et al. Finding routes for effcient and successful slope ascent for exploration rovers[C]//The International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). 2016: 1-8.
[26] INOTSUME H, SUTOH M, NAGAOKA K, et al. Modeling, analysis, and control of an actively reconfigurable planetary rover for traversing slopes covered with loose soil[J]. Journal of Field Robotics, 2013, 30(6): 875-896.
[27] SIM B S, KIM K J, YU K H. Development of body rotational wheeled robot and its verification of effectiveness[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 10405-10411.
[28] KOLVENBACH H, ARM P, HAMPP E, et al. Traversing steep and granular martian analog slopes with a dynamic quadrupedal robot[J]. Journal of Field Robotics, 2021: 01-30.
[29] SKONIECZNY K, MORELAND S J, ASNANI V M, et al. Visualizing and analyzing machinesoil interactions using computer vision[J]. Journal of Field Robotics, 2014, 31(5): 820-836.
[30] ROTHROCK B, KENNEDY R, CUNNINGHAM C, et al. Spoc: Deep learning-based terrain classification for mars rover missions[M]//AIAA SPACE 2016. 2016: 5539.
[31] IWASHITA Y, NAKASHIMA K, RAFOL S, et al. Mu-net: Deep learning-based thermal ir image estimation from rgb image[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019: 0-0.
[32] ZHOU R, DING L, GAO H, et al. Mapping for planetary rovers from terramechanics perspective [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 1869-1874.
[33] MIZUNO M, KUBOTA T. A new path planning architecture to consider motion uncertainty in natural environment[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 2182-2188.
[34] MACDONALD R A, SMITH S L. Active sensing for motion planning in uncertain environments via mutual information policies[J]. The International Journal of Robotics Research, 2019, 38 (2-3): 146-161.
[35] TSANG F, WALKER T, MACDONALD R A, et al. Lamp: Learning a motion policy to repeatedly navigate in an uncertain environment[J]. IEEE Transactions on Robotics, 2021: 1-15.
[36] FANKHAUSER P, HUTTER M. A universal grid map library: Implementation and use case for rough terrain navigation[M]//Robot Operating System (ROS). Springer, 2016: 99-120.
[37] HAUSER K. Semi-infinite programming for trajectory optimization with non-convex obstacles [J]. The International Journal of Robotics Research, 2021, 40(10-11): 1106-1122.
[38] VARAVA A, CARVALHO J F, KRAGIC D, et al. Free space of rigid objects: Caging, path non-existence, and narrow passage detection[J]. The international journal of robotics research, 2021, 40(10-11): 1049-1067.
[39] DEPTULA P, LICITRA R A, ROSENFELD J A, et al. Online approximate optimal path-planner in the presence of mobile avoidance regions[C]//2018 Annual American Control Conference (ACC). 2018: 2515-2520.
[40] QIAN F, KODITSCHEK D E. An obstacle disturbance selection framework: emergent robot steady states under repeated collisions[J]. The International Journal of Robotics Research, 2020, 39(13): 1549-1566.
[41] CHIANG H T, MALONE N, LESSER K, et al. Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015: 2347-2354.
[42] ELHOSENY M, THARWAT A, HASSANIEN A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm[J]. Journal of Computational Science, 2018, 25: 339-350.
[43] CIMURS R, HWANG J, SUH I H. Bezier curve-based smoothing for path planner with curvature constraint[C]//2017 First IEEE International Conference on Robotic Computing (IRC). 2017: 241-248.
[44] PRÁGR M, ČÍŽEK P, FAIGL J. Traversal cost modeling based on motion characterization for multi-legged walking robots[C]//2019 European Conference on Mobile Robots (ECMR). IEEE, 2019: 1-6.
[45] INOTSUME H, SUTOH M, NAGAOKA K, et al. Evaluation of the reconfiguration effects of planetary rovers on their lateral traversing of sandy slopes[C]//2012 IEEE International Conference on Robotics and Automation. IEEE, 2012: 3413-3418.
[46] YANG C, DING L, TANG D, et al. Analysis of the normal bearing capacity of the terrain in case of foot-terrain interaction based on terzaghi theory[C]//2016 IEEE International Conference on Robotics and Biomimetics. IEEE, 2016: 443-448.
[47] KARAFIATH L L, EA N. Soil mechanics for off-road vehicle engineering.[M]. 1978: 3-8.
[48] ANDRADE G, AMAR F, BIDAUD P, et al. Modeling robot-soil interaction for planetary rover motion control[C]//Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems: volume 1. 1998: 576-581.
[49] INOTSUME H, KUBOTA T, WETTERGREEN D. Robust path planning for slope traversing under uncertainty in slip prediction[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3390-3397.
[50] PIPERAKIS S, KOSKINOPOULOU M, TRAHANIAS P. Nonlinear state estimation for humanoid robot walking[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3347-3354.
[51] INOTSUME H, SUTOH M, NAGAOKA K, et al. Evaluation of the reconfiguration effects of planetary rovers on their lateral traversing of sandy slopes[C]//2012 IEEE International Conference on Robotics and Automation. 2012: 3413-3418.
[52] VAN DEN BERG J, ABBEEL P, GOLDBERG K. Lqg-mp: Optimized path planning forrobots with motion uncertainty and imperfect state information[J]. The International Journal of Robotics Research, 2011, 30(7): 895-913.
[53] BRY A, ROY N. Rapidly-exploring random belief trees for motion planning under uncertainty [C]//2011 IEEE international conference on robotics and automation. IEEE, 2011: 723-730.
[54] MELCHIOR N A, KWAK J Y, SIMMONS R. Particle rrt for path planning in very rough terrain [C]//NASA Science Technology Conference 2007 (NSTC 2007). Citeseer, 2007.
[55] MELCHIOR N A, SIMMONS R G, et al. Particle rrt for path planning with uncertainty.[C]// ICRA. Citeseer, 2007: 1617-1624.
[56] MIZUNO M, KUBOTA T. A new path planning architecture to consider motion uncertainty in natural environment[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 2182-2188.
[57] ANGELOVA A, MATTHIES L, HELMICK D, et al. Learning and prediction of slip from visual information[J]. Journal of Field Robotics, 2007, 24(3): 205-231.
[58] INOTSUME H, KUBOTA T, WETTERGREEN D. Robust path planning for slope traversing under uncertainty in slip prediction[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3390-3397.
修改评论